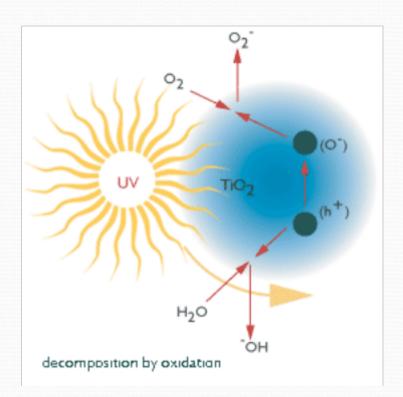
Self Cleaning Membranes in Sea Water Desalination

NE_2010_11

Jamie Durham Anterjot Bains Aaron Tang Rajesh Swaminathan

Consultant: Dr. Christine Moresoli

Design Overview


- Membrane fouling -- main barrier to effective desalination
- Improve membrane filtration throughput
- Current methods require:

 stopping the flow
 cleaning mechanism with periodic reverse flow
- Self cleaning membranes:

 removes the need for a cleaning step
 prevent flow rate decline

What is Self-Cleaning?

- TiO₂ + UV rays = pair of e₋ and p₊
- e_{-} + O_2 = super oxide radical ions
- $p_+ + H_2O = OH_-$ radicals
- These two groups are extremely strong oxidants that remove contaminants, especially organic compounds

Design/Customer Requirements

Primary:

- Desalination membrane that cleans itself as filtration occurs
- Use TiO₂ nanoparticles to implement this requirement

Secondary:

 Improve membrane hydrophilicity and efficiency using SiO₂ nanoparticles

Tertiary:

Small scale portable flow system that scales up for industrial use

Design Purpose

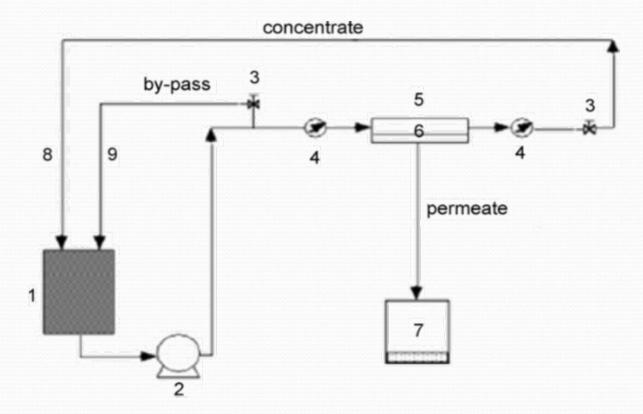
Organic contaminants:

- plug pores and reduces flow
- introduce periodic downtime
- make membranes hydrophobic
- contaminate the flow

Design Purpose

Advantages of self-cleaning membranes:

- No downtime between flows
 - Increases throughput
 - Reduces costs
- Filtration process is simplified -- only requires UV light
- Contaminant concentration minimized
- Longer lasting membrane


Design Criteria/Verification

- Performance Criteria
 - \circ Flow rate
 - Concentration of organic contaminants
 - Selectivity
 - \odot Efficiency to TiO₂ weight ratio
- Test variable: Simulated sea water
 - DI water as control
 - 3.5% salinity
 - \circ Phenols, PCBs, Halogenated compounds

Design Trade-offs

Parameter	Good	Bad
1. Increased UV light duration	Increases self-cleaning properties	Increases cost
2. Increased Particle Concentration	Increases self-cleaning properties	a. Increases deposition time b. Decreases flow rate c. Increases cost
3. Decreased particle size	Increases surface area which increases catalytic performance	Increases Cost
		8

Reverse Osmosis Schematic

- 1. Feed Tank
- 2. Pump
- 3. Valve
- 4. Pressure gauge
- 5. Crossflow cell
- 6. Membrane
- 7. Permeate
- 8. Concentrate
- 9. By-pass

Design Issues

- Deposition Method (ion assisted deposition)
 Adapt TiO₂ to work with chosen deposition method
- Prevent aggregation of TiO2
- Plugging
- Stability -- will TiO₂ actually remain there
- Dispersion of particles/adsorbates (getting uniform distribution)

Timeline

1D	Task Name	Start	Finish	Sep 13, '09	Oct 4, '09	Oct 25, '09	Nov 15, '09	Dec 6, '09	Dec 27, '09	Jan 17, '10	Feb 7, '10
	Milestone: Yes	Tue 10/6/09	Tue 2/9/10		~						
3	Complete Test Setup	Tue 10/6/09	Tue 10/6/09		4 10/6						
7	Complete Osmosis Assembly	Tue 11/24/09	Tue 11/24/09				11/24				
11	Final System Integration	Tue 1/5/10	Tue 1/5/10						1/5		
15	Final Delivery	Tue 2/9/10	Tue 2/9/10								or 2/9
	Milestone: No	Mon 9/14/09	Tue 2/9/10	-	-	_	-				—
1	Obtain Membranes	Mon 9/14/09	Tue 9/22/09	7 days							
2	Assembly of Test Setup	Wed 9/23/09	Tue 10/6/09		2 wks						-
4	Midterms	Mon 10/19/09	Tue 10/27/09		•	7 days					2 2 2
5	Trial 1-6	Wed 10/7/09	Tue 11/10/09		<u> </u>		1.25 mons				
6	Filter Integration	Wed 11/11/09	Tue 11/24/09				2 wks				
8	Trials 7-10	Wed 11/25/09	Tue 12/8/09				<u> </u>	2 wks			
9	Finalize System Integration	Wed 12/9/09	Mon 12/21/09					2	wks		
10	Winter Break	Sat 12/19/09	Tue 1/5/10						13 days		
12	Optimization	Wed 1/6/10	Tue 1/19/10						*	2 wks	
13	Overall Design Review	Wed 1/20/10	Tue 2/9/10								3 wks
14	Preparation for Final Presentation	Wed 1/20/10	Tue 2/9/10							2	3 wks

Critical Milestones:

- Assembly of Test setup Oct 6
- Filter Integration Nov 24
- Finalized System Integration Jan 5
- Overall Design Review Feb 9

Budget - Materials

Materials	Price
Polymer Membrane	Free – Sponsored by Pall Corporation
TiO ₂ Nanoparticles	\$225
SiO ₂ Nanoparticles	\$100
Sea Salt	\$10
Various Organic Contaminants (e.g. PCBs, surfactants)	\$135
Professional Packaging	\$30
SUBTOTAL	\$500

Budget - Equipment

Equipment	Price
 Sponsored Testing Equipment Dead-end membrane holder FE-SEM XPS Image Analysis Software 	Free
AFM	Free
Excimer UV Lamp	\$300
PECVD	Free
Reverse Osmosis Assembly	\$300
SUBTOTAL	\$600
Contingency (20%)	\$220
GRAND TOTAL	\$1,320 13

References

[1] Hyeok, Sung Ho Kim and Sohn Byeong- and Park, Tai Hyun., "Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite." Journal of Membrane Science, 2003, Issue 157-165, Vol. 211.

[2] H. Yamashita, H.Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo., "Coating of *TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an assisted ion deposition method and their self-cleaning performance.*" Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, May 2003, Issue 898-901, Vol. 206.

[3] Guan, Kaishu., "Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2 and SiO2 films." Surfaces and Coating Technology, 2005, Issue 2-3, Vol. 191.

[4] S.S. Madaeni, N. Ghaemi., "Characterization of self-cleaning RO membranes coated with TiO2 particles under UV radiation." Journal of Membrane, 2007, Issue 221-233, Vol. 303.