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3.3 Binary Trees

3.3.1 Problem (p.82) Determine the number, tn, of binary trees with n edges.

The number of binary tress with n edges is

tn =
1

n + 1

(
2n

n

)
This is the Catalan number ; these numbers arise frequently in enumeration.

4.1 Definitions

4.1.7 Handshake Theorem (p.99) For a graph G having q edges, we have

∑
v∈V (G)

deg(v) = 2q

4.1.8 Corollary (p.99) The number of vertices of odd degree in a graph is even.

4.1.9 Definition (p.99) The n-cube is the graph whose vertices are the 0,1-strings of length n,
and two strings are adjacent if they differ in exactly one position, n ≥ 0.

4.1.11 Problem (p.100) The n-cube has p = 2n vertices and q = n2n−1 edges, for n ≥ 0.

4.1.12 Problem (p.101) The n-cube is bipartite, for n ≥ 0.

4.3 Paths and Cycles

4.3.2 Theorem (p.109) If there is a walk from vertex x to vertex y in G, then there is a path
from x to y in G.
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4.3.3 Corollary (p.110) Let x,y,z be vertices of G. If there if a path from x to y in G and a path
from y to z in G, then there is a path from x to z in G.

4.4 Connectedness

4.4.2 Theorem (p.112) A graph G is connected if, for some fixed vertex v in G, there is a path
from v to x in G for all other vertices x in G.

4.4.3 Problem (p.112) The n-cube is connected for each n ≥ 0.

4.4.4 Theorem (p.113) A graph G is not connected if and only if there exists a proper nonempty
subset X of V(G) such that the cut induced by X is empty.

4.4.6 Lemma (p.114) If e = {x,y} is a bridge of a connected graph G, then G - e has precisely
two components; furthermore, x and y are in different components.

4.4.7 Theorem (p.114) Edge e is a bridge of a graph G if and only if e is not in any cycle of G.

4.4.8 Corollary (p.114) If there are two distinct paths from vertex u to vertex v in G, then G
contains a cycle.

5.1 Trees

5.1.2 Lemma (p.118) There is a unique path between every pair of vertices u and v in a tree T.

5.1.3 Lemma (p.118) Every edge of a tree T is a bridge.

5.1.4 Theorem (p.118) For any tree with p vertices and q edges, q = p− 1.

5.1.5 Theorem (p.118) A tree with at least two vertices has at least two vertices of degree one.

Moreover,
n1 = 2 + n3 + 2n4 + 3n5 + 4n6 + · · ·

where ni = the number of vertices of degree i in a tree, i ≥ 0.

5.2 Spanning Trees

5.2.1 Theorem (p.121) A graph G is connected if and only if it has a spanning tree.

5.2.2 Corollary (p.122) If G is connected, with p vertices and q=p-1 edges, then G is a tree.

5.2.4 Theorem (p.122) A graph is bipartite if and only if it has no odd cycles.
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5.3 Breadth-First Search

5.3.1 Algorithm (p.123) To find spanning tree of a graph G: Select any vertex r of G as the
initial subgraph D, with pr(r) = ∅. At each stage, find an edge in G that joins a vertex u of D to a
vertex v not in D. Add vertex v and edge u,v to D, with pr(v)=u. Stop when there is no such edge.

Claim: If D contains p vertices when the algorithm terminates, then D is a spanning tree of G. If
D contains less than p vertices when the algorithm terminates, then G is not connected (so, from
Theorem 5.2.1, G has no spanning tree).

5.3.2 Algorithm (p.126) Breadth-first search. Follow Algorithm 5.3.1 with the following refine-
ment. At each stage consider the unexhausted vertices (called the active vertex), and choose an
edge incident with this vertex and a vertex v not in the tree.

5.3.3 Lemma (p.128) The vertices enter a breadth-first search tree in non-decreasing order of
level.

5.3.4 Theorem (p.128) (The primary property of breadth-first search.) In a connected graph with
a breadth-first search tree, each non-tree edge in the graph joins vertices that are at most one level
apart in the search tree (of course each tree edge joins vertices that are exactly one level apart).

5.4 Applications of Breadth-First Search

5.4.1 Theorem (p.131) A connected graph G with breadth-first search tree T has an odd cycle if
and only if it has a non-tree edge joining vertices at the same level in T.

5.4.2 Theorem (p.131) The length of a shortest path from u to v in a connected graph G is equal
to the level of v in any breadth-first search tree of G with u as the root.

6.1 Planarity

6.1.2 Dual Handshake Theorem (p.151) For a connected planar embedding with faces f1, · · · , fs,
we have

s∑
i=1

deg(fi) = 2q

6.2 Euler’s Formula

6.2.1 Theorem (p.151) For a planar embedding with p vertices, q edges, s faces, and c compo-
nents, we have

p− q + s = 1 + c
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6.2.2 Theorem (p.152) A graph is planar if and only if it can be drawn on the surface of a sphere.

6.3 Platonic Solids

6.3.4 Theorem (p.156) There are exactly five platonic graphs.

6.3.2 Lemma (p.158) Let G be a planar embedding with p vertices, q edges and s faces, in which
each vertex has degree d ≥ 3 and each face has degree d∗ ≥ 3. Then,

(d, d∗) ∈ (3, 3), (3, 4), (4, 3), (3, 5), (5, 3)

and

q =
2dd∗

2d + 2d∗ − dd∗
, p =

2q

d
, s =

2q

d∗

6.4 Nonplanar Graphs

6.4.1 Lemma (p.159) Let G be a planar embedding with p vertices and q edges. If each face of G
has degree at least d∗, then (d∗ − 2)q ≤ d∗(p− 2).

6.4.2 Lemma (p.160) If G is a planar embedding that has at least one cycle, then the boundary
of every face contains a cycle.

6.4.3 Theorem (p.161) In a planar graph on p ≥ 3 vertices, we have

q ≤ 3p− 6

6.4.4 Corollary (p.161) K5 is a nonplanar graph.

6.4.5 Corollary (p.162) A planar graph has a vertex of degree at most 5.

6.4.6 Theorem (p.163) In a planar graph with a cycle, and girth at least k, for k ≥ 3, we have

q ≤ k(p− 2)
k − 2

6.4.7 Corollary (p.163) K3,3 is a nonplanar graph.

6.4.8 Kuratowski’s Theorem (p.164) A graph is nonplanar if and only if it has a subgraph that
is an edge subdivision of K5 or K3,3.
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6.5 Colouring and Planar Graphs

6.5.2 Theorem (p.169) A graph is 2-colourable if and only if it is bipartite.

6.5.3 Theorem (p.170) Kp is p-colourable, and not k-colourable for any k < p.

Remark (p.171) G/e is planar whenever G is. The converse is not true; G/e may be planar when
G is non-planar.

6.5.6 Theorem (p.172) Every planar graph is 4-colourable.

7.1 Matchings

7.1.1 Lemma (p.179) If M admits an augmenting path, then M is not a maximum matching.

7.1.2 Lemma (p.179) If M is a matching of G and C is a cover of G, then |M | ≤ |C|.

7.1.3 Lemma (p.180) If M is a matching and C is a cover and |M | = |C|, then M is a maximum
matching and C is a minimum cover.

7.2 König’s Theorem

7.2.1 Theorem (p.182) In a bipartite graph the maximum size of a matching is the minimum
size of a cover.

7.2.2 Lemma (p.183) Let M be a matching of a bipartite graph G with bipartition A,B, and let
X and Y be defined as a) X = A ∩ Z and b) Y = B ∩ Z. Then:

(a) There is no edge of G from X to B\Y ;

(b) C = Y ∪ (A\X) is cover of G;

(c) There is no edge of M from Y to A\X;

(d) |M | = |C| − |U | where U is the set of unsaturated vertices in Y;

(e) There is an augmenting path to each vertex in U.

7.2.3 Problem (p.184) If G is a bipartite graph with bipartition A, B, where |A| = |B| = n, then
G has a matching of size at least q/n.

Problem If G is a bipartite graph with maximum degree k, then G has a matching of size at least
q/k.

7.3 Applications of König’s Theorem

7.3.1 Hall’s Theorem (p.189) A bipartite graph G with bipartition A,B has a matching saturating
every vertex in A, if and only if every subset D of A satisfies |N(D)| ≥ |D|.
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7.3.2 Corollary (Hall’s SDR Theorem) The collection Q1, Q2, . . . Qn of subsets of the finite
set Q has an SDR if and only if, for every subset J of 1,2,. . . ,n, we have

∣∣ ⋃
i∈J

Qi

∣∣ ≥ |J |
Perfect Matchings in Bipartite Graphs

7.3.3 Corollary (p.192) A bipartite graph G with bipartition A,B has a perfect matching if and
only if |A| = |B| and every subset D of A satisfies

|N(D)| ≥ |D|

7.3.4 Theorem (p.192) If G is a k-regular bipartite graph with k ≥ 1, then G has a perfect
matching.

7.4 Edge Colouring

7.4.1 Theorem (p.194) A bipartite graph with maximum degree ∆ has an edge ∆-colouring.

7.4.2 Lemma (p.194) Let G be a bipartite graph having at least one edge. Then G has a matching
saturating each vertex of maximum degree.

An Application to Timetabling

7.4.3 Theorem (p.197) Let G be a graph and k,m positive integers such that

(a) G has an edge k-colouring;

(b) q ≤ km

Then G has an edge k-colouring in which every colour is used at most m times.

7.4.4 Corollary (p.198) In a bipartite graph G, there is an edge k-colouring in which each colour
is used at most m times if and only if

(a) ∆ ≤ k, and

(b) q ≤ km

∗ − − ∗ − − ∗ − − ∗ − − ∗
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