Math Methods 11

Portfolio Assignment 1

Investigating the Quadratic Function

1. Sketch the graphs of:
a) $y=x^{2}$
b) $y=x^{2}+3$
c) $y=x^{2}-2$

All three graphs have been graphed in the same screen for comparison. From the above graphs, we notice that the graphs of b) $y=x^{2}+3$ and c) $y=x^{2}-2$ have been shifted vertically, either up or down by k units, where k is the number that follows x^{2}.

By looking at the graphs we can generalise the following:

The graph of $f(x)=x^{2}+k$ is the graph of $f(x)=x^{2}$, vertically translated k units. If k is positive, then the shift is upwards. Conversely, if k is negative, the shift is downwards.
2. Consider the graphs of:
a) $y=x^{2}$
b) $y=(x-2)^{2}$
c) $y=(x+3)^{2}$

As in the previous case, all three graphs have been graphed in the same screen for comparison. From the above graphs, we notice that the graphs of b) $y=(x-2)^{2}$ and c) $y=(x+3)^{2}$ have been shifted horizontally, either left or right by h units, where h is the number that follows after $x-$.

By looking at the graphs we can generalise the following:

The graph of $f(x)=(x-h)^{2}$ is the graph of $f(x)=x^{2}$, horizontally translated h units. If h is positive, the shift is to the right. Conversely, if h is negative, the shift is to the left.

Note: In part b), the value of h is 2 , and not -2 , since our standard form is $f(x)=(x-h)^{2}$. In part c), the equation $y=(x+3)^{2}$ can be converted to $y=(x-(-3))^{2}$, to suit our format. Here, $h=-3$.
3. Where would you expect the vertex on the graph of $y=(x-4)^{2}+5$ to be? Explain why.

The graph of $y=(x-4)^{2}+5$ is the graph of $y=x^{2}$, vertically translated 5 units upward, and horizontally translated 4 units to the right. Since the vertex of the graph $y=x^{2}$ is at $(0,0)$, the vertex of the graph $y=(x-4)^{2}+5$ should be at $(4,5)$.

Alternatively, since we know that the vertex of a parabolic function of the form $f(x)=(x-h)^{2}+k$ lies at (h, k), we can expect the vertex of the graph $y=(x-4)^{2}+5$ to be at $(4,5)$ as $\mathrm{h}=4$ and $\mathrm{k}=5$.
4. a) Express $x^{2}-10 x+25$ in the form $(x-h)^{2}$.
$x^{2}-10 x+25$ is noticed to be of the form $a^{2}-2 a b+b^{2}$.
As $a^{2}-2 a b+b^{2}=(a-b)^{2}, x^{2}-10 x+25=(x-5)^{2}$
b) Express $x^{2}-10 x+32$ in the form $(x-h)^{2}+g$

To convert from one form to the other, we use the method of completion of squares.
$f(x)=x^{2}-10 x+32$
$f(x)-32=x^{2}-10 x \quad$ Subtracting 32 from both sides.
$f(x)-32+\left(\frac{-10}{2}\right)^{2}=x^{2}-10 x+\left(\frac{-10}{2}\right)^{2} \quad$ Adding 25 to both sides.
$f(x)-7=(x-5)^{2} \quad$ as $a^{2}-2 a b+b^{2}=(a-b)^{2}$
$f(x)=(x-5)^{2}+7 \quad$ Adding 7 to both sides.
c) Repeat this procedure with some examples of your own.
i) Converting $x^{2}-4 x+3$ to the form $(x-h)^{2}+g$

$$
\begin{aligned}
& f(x)=x^{2}-4 x+3 \\
& f(x)-3=x^{2}-4 x \\
& f(x)-3+\left(\frac{-4}{2}\right)^{2}=x^{2}-4 x+\left(\frac{-4}{2}\right)^{2} \\
& f(x)+1=(x-2)^{2} \\
& f(x)=(x-2)^{2}-1
\end{aligned}
$$

ii) Converting $x^{2}+12 x+16$ to the form $(x-h)^{2}+g$

$$
\begin{aligned}
& f(x)=x^{2}+12 x+16 \\
& f(x)-16=x^{2}+12 x \\
& f(x)-16+\left(\frac{12}{2}\right)^{2}=x^{2}+12 x+\left(\frac{12}{2}\right)^{2} \\
& f(x)+20=(x+6)^{2} \\
& f(x)=(x+6)^{2}-20
\end{aligned}
$$

d) Describe a method of writing the quadratic expression $x^{2}+b x+c$ in the form $(x-h)^{2}+g$.

1. Let the expression equal to y.
2. Isolate the x terms.
3. Add $\left(\frac{b}{2}\right)^{2}$ to both sides.
4. Factor the perfect square trinomial thus obtained.
5. Isolate the y.
6. The equation is now in the form $(x-h)^{2}+g$.
7. Describe the shape and position of the graph $y=(x-h)^{2}+g$. Provide an explanation for this.

The shape of the graph of $y=(x-h)^{2}+g$ will be parabolic, since it is a quadratic equation. We know that the equation is quadratic, due to the presence of a squared expression. The shape will be the same as the graph of $y=x^{2}$, as there isn't any horizontal or vertical compression or expansion.

The graph of $y=(x-h)^{2}+g$ is the graph of $y=x^{2}$, vertically translated g units, and horizontally translated h units.

Hence the graph of $y=(x-h)^{2}+g$ will be exactly similar to the graph of $y=x^{2}$ except that it will be moved h units right or left (right if $h>0$ and left if $h<0$), and g units up or down (up if $g>0$ and down if $g<0$).
6. Do your findings apply to the graphs of other type of functions? Can you generalise?

Yes, the above findings apply to any type of function of the form $y=f(x)$.
Some of the commonly used functions are:

1. Linear Function: $f(x)=x$
2. Quadratic Function: $f(x)=x^{2}$
3. Absolute Value Function: $f(x)=|x|$
4. Cubic Function: $f(x)=x^{3}$
5. Rational Function: $f(x)=\frac{1}{x}$
6. Radical Function: $f(x)=\sqrt{x}$
7. Exponential Function: $f(x)=2^{x}$

We can generalise translations with the following rule:
The graph of the any function of the form $y=f(x-h)+g$, is the graph of the function $y=f(x)$, translated h units horizontally (right if $\mathrm{h}>0$ and left if $\mathrm{h}<0$), and translated g units vertically (up if $g>0$ and down if $g<0$).

Note: All graphs contained within this assignment are generated with:
GraphCalc
Version 4.0 Alpha
http://www.graphcalc.com/

