
Math Methods 12 

 
Portfolio Assignment 3 

 
 

SPEED LIMITS 

 
 

1. The following piecewise equation may be used to compute Bill’s distance d, measured 

in meters from his initial position at the traffic lights, at any time t, measured in 

seconds: 
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a. Graphing the above function yields the following: 
 

 

Figure 1 Bill's distance as a function of time 

 

This distance function for Bill seems quite reasonable as it accounts for the fact that Bill 

would be required to accelerate for a period of time (25s) until he achieves a specific 

speed, after which he maintains a constant speed throughout the rest of the journey. This 

is what usually happens in reality, and so, generally speaking, the above distance vs. time 

function for Bill is well suited to model his distance over the 3 km stretch of highway. 

 
Note: All graphs in this assignment have been generated with GraphCalc, freely 

available from http://www.graphcalc.com/. 
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b. The police radar is located at a distance of 340m from the traffic lights. Substituting 

this value into the given equation, and solving for t shows us that Bill passes the radar 

at a time 20t s= : 
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In order to calculate the time t at which Bill gets pulled over, we use the second piece of 

the function, since the distance covered exceeds the range of the first piece: 
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Bill’s average velocity from 0 to 20 seconds is 61.2 km/h, while that from 0 to 120 

seconds is 90 km/h. In neither case does he exceed the speed limit (Bill is allowed a 

maximum of 5 km/h above the specified limit). 

 



d.  

to tf

0 20 340.00 20 17.00

1 20 339.15 19 17.85

5 20 318.75 15 21.25

10 20 255.00 10 25.50

15 20 148.75 5 29.75

19 20 33.15 1 33.15

19.5 20 16.79 0.5 33.58

19.9 20 3.39 0.1 33.90

Time(s) ∆d ∆t vave (m/s)

 
 
Note: Charts in this assignment have been generated with Microsoft Excel, and all 

calculations have been done using general spreadsheet formulas. 

 

There is a purpose to completing the above chart: if we take a look at the computed 

average velocities, we see that they begin to approach a certain value as t∆  gets closer 

and closer to 0. This certain value is called the limit of the function at 20t s= . In the 

event that ∆t becomes infinitely small (almost 0), the average velocity will converge to 

this limit. This limit is Bill’s instantaneous velocity at 20t s= . 

 

e.  

d(t)-d(t-h)
to tf t-(t-h)

19 20 1 33.15000 33.15

19.5 20 0.5 16.78750 33.575

19.9 20 0.1 3.39150 33.915

19.99 20 0.01 0.33992 33.9915

19.999 20 0.001 0.03400 33.99915

19.9999 20 1E-04 0.00340 33.999915

19.99995 20 5E-05 0.00170 33.9999575

19.99999 20 1E-05 0.00034 33.9999915

19.999999 20 1E-06 0.00003 33.99999914

Time(s) d(t)-d(t-h)h

 
 

From the above table, it is evident that as h gets smaller and smaller, the car’s velocity – 

as computed using the expression 
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( )

d t d t h

t t h

− −

− −
 – approaches 34 m/s.  The smaller the 

value for h is, the closer the velocity is to 34 m/s. The numerical value 34 is therefore the 

limiting value for the velocity as h approaches 0. This can be described mathematically 

using the following notation: 
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f. Bill’s velocity at exactly 20 seconds is called his instantaneous velocity. Ideally, in 

order to compute Bill’s instantaneous velocity, the value of h would have to be to 0. 

However, if h equaled 0, we would end up with 
0

0
, which is an indeterminate 

expression. To circumvent this problem, we take values for h as close to 0 as possible. 

The closer the value of h is to 0, the more accurate Bill’s instantaneous velocity 

would be. For instance, a h of 151.0 10−×  is so close to 0, that substituting this value 

into the above expression would give us a reasonable idea of what is happening at 

exactly 20 seconds. However, if we tried to simplify the above expression, we might 

be able to obtain a still better approximation at 20s: 
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With this simplified version of the quotient, we could substitute a very small number in 

place of h and get a clear picture of Bill’s velocity at precisely 20s. In doing so, we obtain 

an instantaneous velocity of 34 /m s . It is to be noted that the equation 0.85(40 )v h= −  is 

valid only for 20t s= , but is identical to the original quotient because no assumptions 

have been made during the simplification process. 

 

g. It would be possible to find a generic function for Bill’s velocity at any time t. We do 

so by following a similar technique used above. For the first 25s of Bill’s journey: 
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It is to be noted that the slope of a distance vs. time function is nothing but velocity. 

Therefore, we could use this concept of “slope” to easily construct a function for 

Bill’s velocity. So if we were to differentiate ( )d t  with respect to t, we could find a 

function '( )d t  that could give us the slope for any time t: 
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and for 25s and above: 

 

inst

inst

inst

inst

[26.01 119]

[26.01 ] [119]

26.01 [ ] 0

26.01,  25

d
v t

dt

d d
v t

dt dt

d
v t

dt

v t

= −

= −

= −

= ≥

 

 

The above two functions may be combined by defining them piecewise. Thus, 
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If we tested the above function with 20t = , we get a corresponding value of 34 m/s, 

which agrees with our previous observations. 

 

2. It is difficult to say whether Bill should or shouldn’t have been issued a speeding 

ticket. In part b) of question 1, we found that Bill passes the radar at 20t s= , and the 

instantaneous velocity at that moment was found to be 34 m/s, which corresponds to a 

speed of 122.4 km/h. This speed is well above the speed limit, and according to the 

radar which measures instantaneous velocity (as opposed to average velocity), Bill is 

over-speeding. The radar itself has made no error whatsoever in its calculations; 

however, Bill himself sees only an average velocity on his car’s speedometer, and Bill 

has always remained within the average speed limit of 90 km/h. Given these 

circumstances and Bill not able to know his instantaneous velocity, it could be argued 

that Bill should not have been issued with a speeding ticket. 

 

Mathematically however, one could possibly argue that Bill’s instantaneous velocity 

exceeds the limit of 90 km/h, and that it was appropriate for Bill to have been issued 



with a ticket. It is therefore difficult to make a just and judicial decision without 

additional information about the situation. 

 

3. If we create a continuous for Art, his initial distance would 10, because Bill started 

approximately 10m behind Art at the traffic lights. Therefore, A(0) 10= .  

 

If Bill were to never pass Art for the entire 3 km stretch of highway, it would mean 

that the slope of Art’s continuous function must be the same or equal to that of Bill’s 

(during the latter part of the journey, when his velocity becomes constant). In other 

words, A(t) must always be greater than d(t) for any t. Graphically, this would mean 

that Bill’s distance function would always be below that of Art’s for any t, and would 

never intersect Art’s. 

 

If Art were to maintain a constant velocity throughout the entire 3 km of highway, his 

maximum velocity would be the slope of his linear distance-time function. However, 

if he were to travel at 26.01m/s throughout, he would definitely violate the speed limit 

as 26.01m/s corresponds to 93.6 km/h (ignoring the small allowance of 5 km/h). If 

Art traveled at 25m/s all through the highway, he would never violate the speed limit, 

although his slope would now be smaller than that of Bill’s during the latter half of 

the journey. This wouldn’t pose a problem as Bill would still not be able to catch up 

with Art before the 3 km highway came to an end.  

 

Keeping the above discussed points in mind, the simplest function that would also be 

continuous everywhere would be a linear one described mathematically as follows: 

 

 A(t) 25 10x= +  

 

Using the above equation, Art would still be 8m ahead of Bill at the end of the 

highway (and hence does not violate condition 3): 

 

 1( (3000)) 3008A d
− =  

 

This would then mean that Bill eventually overtakes Art at some point in time (after 

the 3 km highway), but accounting for that is outside the scope of condition 3. 



 

4.  

 
        

 

The graph adheres to the conditions imposed on Art’s distance function: 

 

• The condition A(0) = 10 has been satisfied by setting the y-intercept for Art’s 

function equal to 10. Art’s function (green) now starts at 10m when 0t = . 

• Art would never violate the speed limit no matter where the police radar is placed 

because his velocity is always constant at 25 m/s, which corresponds to 90 km/h. 

His instantaneous velocity would also therefore be 90 km/h at any time t. 

• Even at the end of the highway, Art is still 8m ahead of Bill, as can be seen from 

the enlarged portion below. 

 

 
 

5. In order to comment on the physical ramifications of Bill’s ( )d t  and Art’s ( )A t , we 

would be required to have a basic understanding of real-world situations, acceleration, 

and equations of kinematics. 

 

Bill’s distance function d(t)  does not seem to be reasonable due to the following 

reason: The first piece of the function 20.85t  tells us that Bill accelerates from rest for 

25 seconds. With the aid of equations of motion, it can be shown that Bill’s average 

 

8m 



acceleration is 20.85 2 1.7 /m s× = . If he accelerated at this rate for 25s, he would 

reach a speed of 1.7 25 42.5 / 153 /m s km h× = =  at the end of the 25s period. Since 

Bill is a careful driver, it does not seem plausible that Bill would accelerate to such a 

high speed (which is well above the allowed limit) before lifting his foot off the 

pedal. A much better distance function for Bill (assuming Bill stops accelerating once 

his speedometer reads 90 km/h) would be: 
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The corresponding graph (purple) can be seen in Figure 

2. The original graph (blue) has been plotted for 

comparison. 

 

Figure 2 Bill's ideal distance graph 

 

On the same note, Art’s distance function A(t) does not seem to be physically 

acceptable either. In real-world situations, cars always accelerate to a certain speed 

before coasting at a constant speed. This initial acceleration is required in order to 

pick up some speed. According to the linear function described for Art, it seems that 

Art picks up 25m/s (90 km/h) is just a fraction of a second, which in reality does not 

seem possible. 

 

Thus we conclude that although Bill’s and Art’s functions are a good model of their 

distances over an interval of time, they are not physically realistic and cannot be used 

to compute their actual positions or velocities and at a given time t. 

 

        

 


