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Math Methods 12 
 

Portfolio Assignment 4 – Type II 
 

 

ANALYSIS OF A QUARTIC FUNCTION 
 
 
1. The general formula for the binomial expansion of ( )nx y+  is given by 
 

1 2 2 3 3 1( 1) ( 1)( 2)( )
2! 3!

n n n n n n nn n n n nx y x nx y x y x y nxy y− − − −− − −
+ = + + + + ⋅⋅⋅+ +  

 
Substituting x a= , y b= and 3n = yields 
  

3 3 2 2 3( ) 3 3a b a a b ab b+ = + + +  (1) 
 
The same result may be obtained by multiplying out the factors: 
 

3

2 2

3 2 2 3

( ) ( )( )( )
( 2 )( )

3 3

a b a b a b a b
a ab b a b

a a b ab b

+ = + + +

= + + +

= + + +

 

 
2. Letting 2a =  and b x= −  in (1) yields 
 

3 3 2 2 3

2 3

(2 ) (2) 3(2) ( ) 3(2)( ) ( )
8 12 6

x x x x
x x x

− = + − + − + −

= − + −
 

 
3. Using the result from question 2, 
 

3 2 3

2 3 4

(2 ) (8 12 6 )
8 12 6

x x x x x x
x x x x

− = − + −

= − + −
 

 
Re-arranging the terms in decreasing degrees, we obtain 3 4 3 2(2 ) 6 12 8x x x x x x− = − + − +  
which is of the form 4 3 26 12px x x qx+ − + . Comparing coefficients we find 1p = −  and 

8q = . 
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3 2

(2 )
6 12 8

4 18 24 8

y x x
y x x x x

dy x x x
dx

= −

= − + − +

∴ = − + − +
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5. According to the chain rule, ( ) ( ) ( ( )) ( )f g x f g x g x′ ′ ′=o . Alternately, if ( ( ))y f g x=  

and ( )u g x= then ( )y f u= and dy dy du
dx du dx

= ⋅ . 

 
Since the function 3(2 )y x= −  is a composition of two functions, namely 

( ) (2 )f x x= − and 3( )g x x= , we must obey the chain rule while performing the 
differentiation. 

 
If we let u  represent the factor 2 x−  in 3(2 )y x= − , we have 
 

3

3

2

2

2

(2 )

3 [2 ]

3(2 ) ( 1)
3(2 )

y x
y u

dy du x
dx dx

x
x

= −

=

= ⋅ −

= − ⋅ −

= − −

 

 
The student’s result 23(2 )x−  is incorrect because he has failed to multiply his result by 
the derivative of the “inside” function, namely (2 )x− . In doing so, he has inadvertently 
lost the multiplicand -1 which is the derivative of (2 )x− . 

 
6. We obtain the same result as question 4 if we use a combination of product and chain 

rules to differentiate 3(2 )y x x= − : 
 

3

3 3

3 2

3 2

(2 )

(2 ) [ ] [(2 ) ]

(2 ) [3(2 ) ( 1)]
4 18 24 8

y x x
dy d dx x x x
dx dx dx

x x x
x x x

= −

= − + −

= − + − ⋅ −

= − + − +

 

 
7. 3(2 )y x x= −  

From questions 4 and 6, we have 3 24 18 24 8dy x x x
dx

= − + − + . 

The second derivative 
2

2

d y
dx

 can be computed by differentiating dy
dx

. 

So, 
2

2
2 12 36 24d y x x

dx
= − + −  

 
When 2x = , 3(2)[2 (2)] 0y = − = . 
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Similar substitutions yield 3 2

2

4(2) 18(2) 24(2) 8 0
x

dy
dx =

= − + − + =  

and
2

2
2

2

12(2) 36(2) 24 0
x

d y
dx

=

= − + − = . 

 
Conclusions: 
 

• Since 0y = when 2x = , 2 is a zero of the function 3( ) (2 )f x x x= − . Consequently, 
the graph of f must touch the x-axis at this point. 

• Since 0dy
dx

= when 2x = , this point is a stationary point of f. In other words, the 

tangent line at 2x =  has gradient 0 and is thus horizontal. 

• Since 
2

2 0d y
dx

= when 2x = , it follows that f has an inflection point at 2x = . In 

other words, f changes the direction of its concavity at the point (2, 0). 

• Since
2

2 0dy d y
dx dx

= = , it is impossible to say, at this point in time, whether f has a 

relative maximum, a relative minimum, or neither at 2x =  by the second 
derivative test. 

 
8. A rough sketch of 3(2 )y x x= −  can be seen in Figure 1. The conclusions reached in 

the previous question are consistent with the graph of f. 
 
The last conclusion as to whether f has a relative 
maximum, a relative minimum, or neither 
deserves further consideration. Although the 
second derivative test is inconclusive 

since
2

2 0dy d y
dx dx

= = , we note that 2x =  is a root 

of f and has multiplicity 3. This is 
because 3( 2)x −  divides the polynomial f  but 

4( 2)x − does not. There is a close relationship 
between the multiplicity of a root of a polynomial 
and the behavior of the graph in the vicinity of 
the root. Since the multiplicity 3m = of the root 

2x =  is odd (indivisible by 2), the graph will be 
tangent to the x-axis at 2x = , will cross the x-axis, 
and will also have an inflection point there. We have already recognized 2x = as being 
both a stationary as well as an inflection point. However, the fact that the graph crosses 
the x-axis at this point indicates that f has neither a relative maximum nor a relative 
minimum there. In order for f to have a relative extremum at 2x = , the graph will have to 
“bounce-off” the x-axis once it touches it. This conclusion is evident in the graph of f in 
Figure 1. 
 

Figure 1 3(2 )y x x= −  
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9. A sketch graph of the definite integral 
2

3

0

(2 )x x dx−∫  can be seen in Figure 2. The area 

enclosed by the graph and the x-axis has been shaded and computed to equal 1.6. 
 

 

Note: All graphs in this assignment, unless otherwise noted, were generated with 
GraphCalc, freely available from http://www.graphcalc.com/. 
 
10.  By the method of u-substitution, it is possible to evaluate the definite integral 

2 3

0
(2 )x x dx−∫  without needing to expand the cubed term.  

 
If we make the substitution 2u x= − , it follows that du dx= − or dx du= − . This leaves a 
factor of x unresolved in the integrand. However, since 2u x= − , we have 2x u= − . 
 
With this substitution 

 
if 0x = , 2 0 2u = − =  
if 2x = , 2 2 0u = − =  
 

so 
 

Figure 2 
2

3

0

(2 )y x x dx= −∫  
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2 03 3

0 2
0 3 4

2
2 3 4

0
24 5

0
5

3

(2 ) (2 ) ( )

(2 )

(2 )

2 5

22
5

8
5
1.6

u

x x dx u u du

u u du

u u du

u u

=

− = − −

= − −

= −

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

= −

=

=

∫ ∫
∫
∫

 

 
which matches the result obtained in question 9. 
 

REMARK.   The evaluation of the above definite integral is not only tedious but 
also error-prone since it was performed manually by hand. The same computation 
was done by the Maxima1 Computer Algebra System (CAS) in less than a 
millisecond: 
 
rajesh@rbox ~ $ maxima 
Maxima restarted. 
(%i1) integrate(x*(2-x)^3, x, 0, 2); 
 
                 8 
(%o1)            - 
                 5 

 
11.  In question 3, we showed that 3 4 3 2(2 ) 6 12 8x x x x x x− = − + − + . Integration of this 

quartic polynomial is as follows:  

                                                 
1 http://maxima.sourceforge.net/ 
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2 2
3 4 3 2

0 0
25 4 3 2

0

25 4
3 2

0
5 4

3 2

(2 ) ( 6 12 8 )

6 12 8
5 4 3 2

3 4 4
5 2

(2) 3(2) 4(2) 4(2)
5 2

32 24 32 16
5

40 32
5

1.6

x x dx x x x x dx

x x x x

x x x x

− = − + − +

⎡ ⎤
= − + − +⎢ ⎥
⎣ ⎦

⎡ ⎤
= − + − +⎢ ⎥
⎣ ⎦

= − + − +

= − + − +

−
=

=

∫ ∫

 

 
which once again agrees with the result obtained in questions 9 and 10. 
 
12. The trapezoidal approximation of a definite integral is an average of the left-hand 

and right-hand approximations. This approximation is given by 
 

[ ]0 1 1( ) 2 2
2

b

n n
a

b af x dx y y y y
n −
−⎛ ⎞≈ + + ⋅⋅⋅ + +⎜ ⎟

⎝ ⎠∫  

 
With 3( ) (2 )f x x x= − , 0a = , 2b =  and 4n = the definite integral may be approximated 

as follows (the x values for the trapezoids being incremented by 2 0 0.5
4
−

=  each time): 

 

( ) ( )( )

[ ]

2 3

0

2 0(2 ) (0) 2 0.5 (1) 1.5 (2)
2 4

1 0 2(1.6875 1 0.1875) 0
4
1.4375

x x dx f f f f f−⎛ ⎞ ⎡ ⎤− ≈ + + + +⎜ ⎟ ⎣ ⎦×⎝ ⎠

≈ + + + +

≈

∫

 

 
The absolute error (or margin of error) in this approximation is given by 
 

( )
b

T na
E f x dx T= −∫  

 
Using this, we find the error in approximation to be 1.6 1.4375 0.1625− =  or 
0.1625 100% 10.2%

1.6
× ≈  
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13. The easiest way to find out the number of solutions to the equation 3(2 ) 1x x− =  
would be to graph the function 3(2 ) 1y x x= − −  and count the number of intersections 
with the x-axis. Since this is a quartic function, we expect to have at most 4 solutions. 
The graph of 3(2 ) 1y x x= − −  is shown in Figure 3. 

 

 

 
It is evident from the above graph that the equation 3(2 ) 1x x− =  has exactly two real 
solutions. 

 
Another method to determine the number of 
solutions would be to graph the function 1y =  over 
the graph of 3(2 )y x x= −  that was graphed in 
Figure 1 and count the number of intersections (see 
Figure 4). It can be seen that the two curves 
intersect twice and so the equation 3(2 ) 1x x− =  has 
exactly two real solutions. 
 
 
 
 
 
 
 
 

 
 

Figure 3 3(2 ) 1y x x= − −  

Figure 4     
1

3
2

1

(2 ) 1

y

y x x

=

= − −
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REMARK.   If a graphing utility is unavailable, the Maxima CAS can give us the 
number of solutions quickly, thanks to the built-in NROOTS() or REALROOTS() 
functions. For instance: 
 
(%i1) REALROOTS(x*(2-x)^3-1); 
 
                                  5392641 
(%o1)                        [x = --------, x = 1] 
                                  33554432 
 
We find two real roots for this equation. To confirm, we could use the NROOTS() 
function. 
 
(%i2) NROOTS(x*(2-x)^3-1); 
 
(%o2)                                  2 
 
Since we want all roots between 1x = − and 3x = , we specify the lower and upper 
bounds. However, since both solutions are between these bounds, we still obtain 
2. 
 
(%i3) NROOTS(x*(2-x)^3-1, -1, 3); 
 
(%o3)                                  2 

 
The equation 3(2 ) 1x x− =  can be re-arranged in two ways: 
 

• Dividing both sides by 3(2 )x−  [we can do this since 2x ≠ ], we get 3

1
(2 )

x
x

=
−

. 

If x equaled 1
(2 ) px−

, then 3p = . 

•  
 
 
 
 
 
 
 
 

where the second step is justified by recognizing the fact that 0x ≠ . If x equaled 
1
3( )q x

−
− , then 2q = . 

 
Using the methods of simple iteration and taking 0 0.5x = : 
 

3

3

3

1
3

(2 ) 1
1(2 )

1(2 )

2

x x

x
x

x
x

x x
−

− =

− =

− =

= −
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[ ]

[ ]

[ ]

[ ]

1 3

2 3

3 3

8 3

1 0.2963
2 (0.5000)

1 0.2022
2 (0.2963)

1 0.1721
2 (0.2022)

1 0.1607
2 (0.1608)

x

x

x

x

= =
−

= =
−

= =
−

= =
−

M

  

1
3

1
1
3

2
1
3

3

1
3

10

2 (0.5000) 0.7401

2 (0.7401) 0.8945

2 (0.8945) 0.9621

2 (0.9999) 1.0000

x

x

x

x

−

−

−

−

= − =

= − =

= − =

= − =

M

 

 
These two results (accurate to within 4 decimal places) are approximations of the 
solutions to the equation 3(2 ) 1x x− =  as can be seen in Figure 3. Each form of the 
original equation 3(2 ) 1x x− = , namely 31/(2 )x x= −  and 1/32x x−= − , yields one of the 
two solutions. 
 
Using other values for 0x , we find that the results converge to the same answer every 
time. This convergence can be seen graphically in Figure 5. 
 
It is helpful to remind ourselves of what actually happens as we perform the iteration. 
Each term of the iterative sequence nx  is computed from the previous term using the 
iterative function. Mathematically, this means that 1 ( )n nx f x+ = , where ( )f x is any one of 
the above two iterative functions. If this process is repeated continuously and the limit 
taken, we will eventually obtain a solution to the original equation. This is to say 
that 1lim lim ( )n nn n

x f x+→∞ →∞
= , where ( )f x is an iterative function (the re-arranged equation 

solved for x). In our case, 
 

1 3

1lim lim 0.1607
(2 )nn n

n

x
x+→∞ →∞

= ≈
−

, and 

1
3

1lim lim 2 ( ) 1n nn n
x x

−

+→∞ →∞
= − = . 

 
The Newton-Raphson method of approximation is given by the following iterative 
function: 
  

1
( ) , 0,1, 2, ...
( )

n
n n

n

f xx x n
f x+ = − =
′

 (2) 

 
In order to determine if the Newton-Raphson method can be used to yield the same 
results, we check to see whether the absolute value of the derivative evaluated at some 
test value 0x  is in between 0 and 1. In other words, if ( )f x  is a differentiable function  
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Figure 5 

3

1( )
(2 ( 1))

u n
u n

=
− −

1
3( ) 2 ( 1)u n u n

−
= − −
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Note: The graphs in Figure 5 were generated with Gnuplot, freely available from 
http://www.gnuplot.info/. 
 
and we started with some test value 0x , then 0( )f x′  must be less than 1 for the iterative 
function to converge and yield an approximation. If this condition is not satisfied, we will 
have a diverging iterative sequence and will never reach an approximation. 
 
Furthermore, if 0( )f x′ is positive, we will have a monotonic convergence. Conversely, if 

0( )f x′ is negative, we will have an oscillating convergence. The meaning of these two 
terms is left unexplained for the interested to pursue. 
 
Since we are attempting to solve the equation 3(2 ) 1x x− = , we let 3( ) (2 ) 1f x x x= − − , 
so 3 2( ) 4 18 24 8f x x x x′ = − + − +  (verify) and (2) becomes 
 

4 3 2

1 3 2

6 12 8 1
4 18 24 8n n

x x x xx x
x x x+

− + − + −
= −

− + − +
, or 

4 3 2

1 3 2

6 12 8 1
4 18 24 8n n

x x x xx x
x x x+
− + − +

= +
− + −

  (3) 

 
If we started with a test value 0 0.5x = , then  
 

3 2(0.5) 4(0.5) 18(0.5) 24(0.5) 8 0f ′ = − + − + =  
 
and can therefore not be used to give a result since the denominator in (3) evaluates to 0 
and is thus undefined. 

 
If we used different test values such 
as 0 0.1, 0.3, 1.3x = , we still find that we are 
unable to use the Newton-Raphson method since 
in each case 0( ) 1f x′ > . For what value of 0x  will 

0| ( ) |f x′  be less than 1 but not equal to 0? The 
answer to this problem can be obtained by 
graphing ( )f x′  [see Figure 6] and looking for 
values of x whose y values are not zero and are in 
the interval (-1, 1). For this, we solve the 
equations ( ) 1f x′ =  and ( ) 1f x′ = − . This is a  

 
 
 

straight-forward task that can be achieved with the Maxima CAS: 
 
(%i1) f(x):= x*(2-x)^3-1; 
(%i2) define(df(x), expand(diff(f(x), x))); 
 
 
 

Figure 6 3 24 18 24 8y x x x= − + − +  
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(%i3) realroots(df(x)-1); 
 
                                     13491845 
(%o3)                           [x = --------] 
                                     33554432 
 
(%i4) realroots(df(x)+1); 
 
                           21272657      3      79390639 
(%o4)                 [x = --------, x = -, x = --------] 
                           33554432      2      33554432 
 
13491845 21272657 793906390.403, 0.634, 2.366
33554432 33554432 33554432

≈ ≈ ≈  

 
We can thus conclude that in order to be able to solve the equation 3(2 ) 1x x− =  using the 
Newton-Raphson method, we must use an initial value that is in the 
interval (0.403, 0.500) (0.500, 0.634) (1.500,2.000) (2.000, 2.366)U U U . 
 
Using any initial value from this interval and (2), we obtain the same solutions to the 
equation 3(2 ) 1x x− = , namely 0.1607x = and 1x =  (verify). 
 

 
 


