A Sequential Linear Programming Algorithm for Portfolio Optimization at GE

MSCI 331 Operations Research 1

Richard Hui, Rajesh Swaminathan, Sarah Vandaiyar

November 30, 2006

Discussion Plan

Problem Description
Mathematical Model (Markowitz)
Solution Approach
Implementation, Implications, Savings
Computational Experiment
Q & A

Overview of Portfolio Optimization

Definitions:

- Portfolio
- Risk
- Return
- Correlation
- Asset weights

GE Asset Management manages investment portfolios on behalf of clients

Problem at GE

Optimization of non-linear problems was beyond computational limits of solvers Concerns posed by simple LP approximations Previous algorithms, because of time constraints, could be run only after market variables changed, not before

Assumptions

- Investors are risk averse; they prefer less risk to more for the same level of expected return
- Expected returns, variances and covariances of all assets are known
- Ignore skew and kurtosis of distribution
- No transaction costs or taxes

Mathematical Model

Decision Variables Asset weights W_1 , W_2 , and W_3 Objective Function MIN $\sigma_p^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j Cov(R_i R_j)$ Constraints Weight constraints $\sum_{j=1}^{n} w_j = 1$ $E(R_{p}) = \sum_{j=1}^{n} w_{j} E(R_{j}) = z$ $w_{j} \ge 0, \ j = 1, 2, 3, \dots$ **Fixed return** Non-negativity

Markowitz Model

Objective: Generate the *minimum variance frontier*Find the lowest risk for a given level of return

Sequential Linear Programming (SLP) Overview

SLP Algorithm

SLP Example for 2 Assets

SLP Example for 2 Assets

SLP Example for 2 Assets

Implementation and Savings

Implementation

- Algorithm coded in MATLAB
- Web-based Java interface using JMatLink
- Deployed on GE's Intranet

Benefits

- Polynomial-time versus exponential-time
- Managers can run algorithm multiple times
- Optimized over 30 portfolios valued at \$30 billion
- Expected benefits total \$75 million over five years

Limitations

- Uses historical data to predict future trends
- Model works only for convex risk functions

Computational Experiment

- Choice of Stocks: RIM, Gap, Ballard
- Coded in MATLAB using linprog
- Minimum Variance Frontier
- Linear Risk Approximation (Taylor)
- Advantages to Diversification

	GAP	RIM	Ballard
Mean Daily Returns	18.70	113.10	6.21
Standard Sample Deviation	1.341	21.151	0.645
Correlations			
GAP	1.000		
RIM	0.883	1.000	
Ballard	0.455	0.683	1.000

Closeness of Approximation LP vs. QP

References

- Chalermkraivuth et al. "Sequential-Linear-Programming Algorithm to Optimize Portfolios." *Interfaces* 35(5), pp. 370-380. Informs, 2005.
- DeFusco et al. "Quantitative Methods For Investment Analysis." 2nd Ed. CFA Institute, 2005.
- Markowitz, H. "Portfolio Finance." J. Finance 7(1) pp. 77-91. 1952.

Questions?

