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1 Executive Summary

In asset-liability management applications (ALM), the key objective is to optimize portfolio

investments by either maximizing return or minimizing risk. Although risk is widely repre-

sented as a non-linear function (usually quadratic), portfolio managers traditionally need to

work with linear risk functions to ensure “computational tractability”. The paper GE Asset

Management, Genworth Financial and GE Insurance Use a Sequential-Linear-Programming

Algorithm to Optimize Portfolios [1] introduces a sequential linear programming (SLP) al-

gorithm that accounts for the non-linearity associated with risk measurement.

The algorithm approximates the efficient frontier—a relationship between risk and return—

by first generating the highest possible return without considering risk, and solving the

resulting LP relaxation. The next step is to generate another portfolio with a slightly

smaller risk and return value. This is done by approximating the non-linear objective with

a linear function tangent at the solution obtained in the previous step. A linear constraint

is added to the LP to restrict the objective function to below a new target risk value. The

solution to the resulting new LP generates the next portfolio. This process is repeated until

the efficient frontier is adequately represented.

For our computational experiment, we formulated a hypothetical portfolio consisting of three

stocks: Gap Inc., Ballard Power Systems, and Research in Motion. The algorithm was coded

in MATLAB and then used to approximate the efficient frontier.

The algorithm has proven to be suitable for large-scale asset-liability optimizations involving

thousands of securities. With this new tool, GE has been able to run the optimization

multiple times as market variables change, rather than only when it is clear that analysis is

needed.
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2 Discussion

2.1 Problem Description

GE financialists used a multifactor-based portfolio optimization technique, wherein the risk

is quadratic. Because most practical applications of this model require selecting thousands

of securities, solving ALM optimization problems was beyond the computational limits of

commercial quadratic solvers.

ALM portfolio managers have generally used LP approximations to simplify calculations.

Although the objective and constraints in this simplified model are linear, the model still

has some shortcomings. First, one cannot determine a meaningful efficient frontier because

there is not one measure of risk. Second, the risk measures capture only the severity aspect

of the portfolio risk and not the frequency, so that the risk is not fully characterized. Fi-

nally, computing the mismatch targets involves a trial-and-error process such that different

managers will obtain different final portfolios.

2.2 Mathematical Model

The model developed by GE is based on modern portfolio theory proposed by Harry Markowitz

[2], where the goal of portfolio optimization is to manage risk through diversification and

obtain an optimal risk-return trade-off. This means that an investment opportunity can be

meaningfully measured in terms of mean return and variance of risk.

The objective in using a mean-variance approach is to choose an efficient portfolio by offering

the highest expected return for a given level of risk as measured by variance or standard

deviation of returns.
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To determine the minimum-variance frontier for a set of n assets, we must first determine the

minimum and maximum expected returns possible. Then, we must determine the portfolio

weights that will create the minimum variance for values of expected return z between

the maximum (rmax) and minimum returns (rmin) of all possible portfolios. The linear

programming (LP) representation of the portfolio optimization problem is:

MIN σ2
p =

n∑
i=1

n∑
j=1

wiwjCov(Ri, Rj)

s.t. E(Rp) =
n∑

j=1

wjE(Rj) = z

n∑
j=1

wj = 1

wj ≥ 0, for j ∈ {1, 2, 3, . . . , n}

where E(Rp) represents the expected return of the portfolio, E(Rj) is the expected return

of the jth asset, wj is the weighting of each asset, and Cov(Ri, Rj) is the covariance between

two returns.

2.2.1 Analysis

The model developed by GE is based on Markowitz’s mean-variance analysis is based on the

following assumptions:

1. All investors are risk averse; they prefer less risk for the same level of expected return.

2. The expected returns, variances, and covariances of all assets are known.

3. Investors can ignore skewness and kurtosis of the distribution.

4. There are no transaction costs or taxes.
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Strengths of the model include the ability of the investor to optimize a given portfolio. Be-

cause this model assumes that risk is a non-linear function, optimization poses limits on

solvers because of the complexity of the problem. Furthermore, the mathematical represen-

tation of risk is still in its early stages of development. Most importantly, the model does

not consider other risk factors besides market risk.

Today, portfolio managers are studying LP approximations to simplify the optimization

problem associated with this approach.

2.3 Solution Approach

The algorithm computes the first portfolio on the efficient frontier that yields the high-

est possible return, ignoring risk. The next approximated portfolio has a smaller risk and

expected return value. The non-linear risk function is approximated by a linear tangent

centered around the solution obtained in the previous iteration. A new constraint is added

to restrict allowed risk values to those less than the value obtained in the previous iteration.

The algorithm iterates until the portfolio with the smallest possible risk/return has been

reached. Each iteration computes the optimum portfolio for a given return which decreases

by a step size ε each iteration. The variable ε dictates the run-time of the algorithm and

the accuracy of the linear approximation. In the limit that ε goes to zero, the frontier will

converge to the true efficient frontier (for a convex risk function). However, the code would

then run for an infinitely long time.

Another approach would be to start with the lowest possible return and then iterate the

algorithm with incremental gains in return. Our mini-case produces the efficient frontier in

this manner.
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2.4 Implementation, Savings and Benefits

The algorithm was implemented in MATLAB and distributed as a web-based application

over GE’s intranet. Once registered, portfolio managers had access to a variety of tools and

functions with a standard web browser. Hence, there was no need to install any software on

local machines. Built on the Java platform via a connector plugin called JMatLink, the web

application prompts for user input and displays optimization results.

Since the implementation of the SLP algorithm in 2003, more than 30 portfolios totaling over

$30 billion have been optimized using this approach. For $100 billion of assets, the present

value (as of 2005) of benefits is approximated to be $75 million or 0.075% over 5 years.

GE’s SLP algorithm has proven to be suitable for large-scale asset-liability optimizations

involving thousands of securities. The SLP approximates the efficient frontier in minutes

where traditional commercial QP solvers would take hours. With this new tool, GE has

been able to pro-actively run the optimization multiple times as market variables change.

2.5 Computational Experiment

For our mini-case, we chose three contemporary stocks from three different industry sectors.

Our three companies were Gap Inc. (retail), RIM (technology), and Ballard (energy). The

problem was to obtain the minimum-variance frontier based on historical data. Then, given

a desired risk tolerance characterized by variance (or equivalently, standard deviation), we

want to determine the optimal fraction of investments in each stock to obtain the highest

expected return.

We obtained closing prices of these three stock prices over the last three months. This data

has been plotted in Figure 2 (Appendix B) and summarized in Table 1. A more refined
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version of the problem can be stated as follows: Given x dollars and an acceptable risk

tolerance y% in terms of standard deviation, what are the best weights w1, w2 and w3 that

determine what fraction of x should be invested in each stock respectively?

GAP RIM Ballard

Mean Daily Returns 18.70 113.10 6.21
Standard Sample Deviation 1.341 21.151 0.645
Correlations

GAP 1.000
RIM 0.883 1.000
Ballard 0.455 0.683 1.000

Table 1: Summary of daily stock closing prices from 17 Aug. – 17 Nov. 2006.
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Figure 1: Minimum Variance Frontier for Mini-Case

Although it might seem on first insight

that investing all money in RIM is the

ideal solution (since RIM has the highest

mean return), this is only true if one is

willing to take the maximum risk. The

advantages of diversification have been

studied extensively and in general, diver-

sification leads to the same expected re-

turn but with lower risk. This is espe-

cially true when including into the port-

folio stocks that have a correlation factor

less than one.

We used MATLAB to iterate between levels of expected return between the minimum and

maximum levels. For each given expected return, we used a first order Taylor approximation

of the risk function centered around the weights obtained in the previous iteration to obtain

the portfolio weights that resulted in the lowest risk for that level of expected return. The
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coded algorithm repeats this process for each level of average return as we move from the

minimum level (rmin = 6.21) to the maximum level (rmax = 113.1) to obtain the allocation

weights that correspond to the least risk for that return. We performed 30 iterations in

increments of 3.5% of average return.

The minimum-variance frontier is plotted in Figure 1. The MATLAB code is viewable in

Appendix A of this document.

3 Conclusions

Our study of the SLP algorithm has proven time savings that translate to economic savings

as a result of a simplification of Markowitz’s mean-variance analysis. The simplification has

resulted in decreasing run-time from exponential-time to polynomial-time with respect to

the number of assets.

The mini-case problem was useful in our theoretical understanding of LP problems, as pre-

sented in MSCI 331. Furthermore, we were able to integrate fundamental OR principles to

real-world applications.
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Appendices

A The MATLAB Code

1 % SLP Algorithm for solving the PORTFOLIO OPTIMIZATION problem

2 % Rajesh Swaminathan

3 % MSCI 331 - #20194189

4 %

5 % Created : 11/18/2006

6
7 % clear all variables

8 clear

9
10 % specify the max. num of slp iterations

11 num_iterations = 30;

12
13 % define data

14
15 returns = [84.15 113.10 74.56];

16 risks = [7.377 21.151 9.032];

17 corrs = [1.000 0.883 0.455

18 0.883 1.000 0.683

19 0.455 0.683 1.000];

20
21 [rmin,i] = min(returns);

22 rmax = max(returns);

23
24 eps = (rmax - rmin) / num_iterations;

25 r = rmin;

26
27 for j = 1:3

28 if i == j

29 w(j) = 1.00;

30 else

31 w(j) = 0.00;

32 end

33 end

34
35 prisks(1) = risk(returns, risks, corrs, w);

36 preturns(1) = ereturn(returns, w);
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37
38 % initialize the counter

39 k = 1;

40
41 while (r <= rmax)

42
43 % increment the counter

44 k = k + 1;

45
46 % increase the return by a fixed amount eps

47 r = r + eps;

48
49 % define equality and inequality constraints

50
51 % w1 >= 0 (non-negativity)

52 % w2 >= 0

53 % w3 >= 0

54 A = [-1 0 0;

55 0 -1 0;

56 0 0 -1];

57
58 % w1 + w2 + w3 = 1

59 % r1*w1 + r2*w2 * r3*w3 = r

60 Aeq = [[1 1 1]; returns];

61
62 b = [0; 0; 0];

63 beq = [1; r];

64
65 % compute the coefficients of w1,w2,w3 in the 1st order

66 % taylor about w(1), w(2), and w(3)

67
68 f(1) = 2*risks(1)^2*w(1) + 2*w(2)*risks(1)*risks(2);

69 f(1) = f(1) + 2*w(3)*risks(1)*risks(3);

70 f(2) = 2*risks(2)^2*w(2) + 2*w(1)*risks(2)*risks(1);

71 f(2) = f(2) + 2*w(3)*risks(2)*risks(3);

72 f(3) = 2*risks(3)^2*w(3) + 2*w(1)*risks(3)*risks(1);

73 f(3) = f(3) + 2*w(2)*risks(3)*risks(2);

74
75 w = linprog(f, A, b, Aeq, beq);

76
77 prisks(k) = risk(returns, risks, corrs, w);

78 preturns(k) = ereturn(returns, w’);
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79
80 end

81 %end while loop

82
83 plot(prisks, preturns, ’r*:’);

84 hold on

85
86 % replot only efficient frontier

87 x = [];

88 y = [];

89 [i,j] = min(prisks);

90
91 for i = 1:length(prisks)

92 if preturns(i) >= preturns(j);

93 x = [x prisks(i)];

94 y = [y preturns(i)];

95 end

96 end

97
98 plot(x,y,’k*-’);

99
100 % plot from qp solver

101 [prisks, preturns, pweights] = ...

102 frontcon(returns, corr2cov(risks, corrs), num_iterations+20);

103 plot(prisks, preturns, ’yo’);

104
105 % investment in one stock only

106 ws = [1,0,0

107 0,1,0

108 0,0,1];

109 shapes = [’s’, ’o’, ’^’];

110 for i = 1:3

111 x = risk(returns, risks, corrs, ws(i,:));

112 y = ereturn(returns, ws(i,:));

113 plot(x, y, [’k-’ shapes(i)]);

114 end

115
116 ylabel(’Expected Return (%)’);

117 xlabel(’Standard Deviation (%)’);

118 title(’Minimum-Variance Frontier: Gap Inc., RIM, and Ballard’);

119 legend({’Inefficient Frontier’,’Efficient Frontier’,’QP Solution’, ...

120 ’GAP’,’RIM’,’Ballard’},’Location’,’NorthWest’);
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B Mini-Case Data

Figure 2: Closing price summary of GAP, RIM and Ballard stocks.
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Closing Price Closing Price
Day GAP RIM Ballard Day GAP RIM Ballard

1 17.30 86.69 6.19 34 19.44 114.40 5.48
2 16.65 89.72 6.21 35 19.26 122.18 5.64
3 16.87 90.00 6.09 36 19.07 123.89 5.62
4 16.80 87.92 6.22 37 19.25 122.50 5.54
5 16.52 89.00 6.14 38 19.62 127.65 5.61
6 16.57 88.00 6.18 39 19.81 126.73 6.10
7 16.61 89.08 6.11 40 19.81 126.19 6.14
8 16.85 91.50 6.08 41 19.85 129.58 6.04
9 16.96 92.00 6.12 42 19.49 125.65 6.03
10 17.22 91.51 6.24 43 19.46 128.00 5.98
11 16.81 91.13 6.17 44 19.56 125.05 5.91
12 16.90 91.27 6.09 45 19.47 124.42 5.92
13 16.75 90.50 6.09 46 19.30 123.94 5.91
14 16.92 91.18 6.01 47 20.06 127.79 6.49
15 16.73 88.38 5.94 48 19.94 131.81 6.29
16 16.90 87.21 5.87 49 19.73 131.00 7.09
17 16.90 89.58 5.91 50 20.51 132.24 7.06
18 17.08 90.05 5.92 51 20.72 129.93 6.86
19 17.48 92.68 5.83 52 21.09 133.31 6.95
20 17.68 93.46 5.80 53 21.02 131.90 7.07
21 17.92 94.61 5.64 54 20.64 132.41 6.81
22 18.21 94.76 5.85 55 19.50 132.05 6.67
23 18.16 93.97 5.52 56 19.57 131.48 6.72
24 18.34 95.70 5.32 57 19.50 135.98 6.70
25 18.16 99.97 5.21 58 19.49 138.55 6.67
26 18.39 97.50 5.27 59 19.48 141.25 7.25
27 18.47 96.96 5.34 60 20.02 140.81 7.25
28 18.50 98.05 5.44 61 20.19 140.61 7.26
29 19.07 97.51 5.76 62 19.85 146.11 7.39
30 19.17 95.99 5.94 63 19.93 146.56 7.40
31 18.95 95.30 5.69 64 20.02 146.48 7.60
32 18.93 114.59 5.57 65 19.80 153.12 7.88
33 19.21 112.00 5.40 66 19.81 153.07 7.59

Table 2: Summary of daily stock closing prices from 17 Aug. – 17 Nov. 2006.
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