

High Resistance CNT Film for Rapid Shoe Insole Heating

NE_2010_11

Aaron Tang Anterjot Singh Bains Jamie Durham Rajesh Kumar

Consultant: Dr. Aiping Yu

Introduction

A couple of questions for those in the audience:

- Have you ever felt that your feet were cold during the winter?
- Have you ever gotten your socks and feet wet from snow, rain, or a combination of both?
- Have you had trouble drying your shoes?
- Have you ever wondered if something could be done about these problems?

In that case...

We think we might have the answer:

Customer Requirements

Our critical considerations for the design:

- Risk of burning
- Heating Performance
- Weight
- Removable setup
- Aesthetics

Customer Requirements

Other considerations:

- Cost
- Control

How does it work?

Design concept driven by a version of Ohm's Law:

 $P = I^2 R$

- Conventional design would employ a copper coil.
- Our design employs a carbon nanotube film
 - This provides high conductivity and high power dissipation.
 - Allows greater current than a copper wire loop.
 - Better conformal coverage to the contours of a shoe.

How does it work?

 By combining the equations for power dissipation and the heat flow equation, we obtain the theoretical performance:

$$\Delta T = \frac{V^2}{l^2 \times \rho \times C_{sp} \times density} \times time$$

- ρ = Resistivity
- l = length
- V = voltage
- C_{sp} = specific heat capacity of carbon
- It can be seen that the heating performance depends on the applied voltage, resistivity, cross-section area, density, specific heat capacity, and time.

Procedure Overview:


- 1. CNT Treatment with Nitric Acid
- 2. CNT Filtration to wash away Nitric Acid
- 3. Sonication of CNTs in DI water
- 4. Film Making Filtration
- 5. Post Processing electrical connections
- 6. Implementation shoe assembly

1. Treatment

- Boil MWCNT in Nitric Acid (3 hours)
- Raises purity of carbon nanotubes to usable level
- Reduces length and straightens MWCNT
- Functionalizes MWCNT with OH, C=O, and COOH end groups to enhance mechanical properties of film

2. Filtration

- Wash MWNTs with DI H2O until they have pH 6 to 6.5
- Removal of nitric acid used in purification
- Removal physical residues created by purification

3. Sonication for Film Making

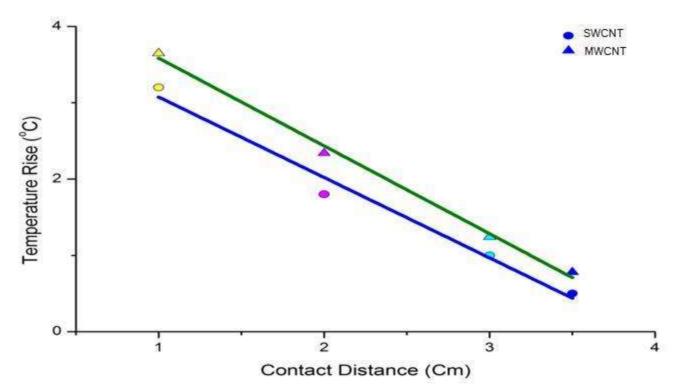
- Distribute 2.55g of wet MWCNT in 4L of DI water (for a 80 mm diameter film)
- Disperses agglomerated MWCNT.
- Enhances film uniformity
- 4. Film Making
- Apply dispersed and purified MWCNT to vacuum enhanced filtration setup (see picture).
- Filter cake with uniform thickness becomes the carbon nanotube film.

5. Post Processing

- Contacts formed with gold plasma sputtering
- Wiring of film to complete functionality. Leads attached with silver epoxy.

• 6. Implementation

- Trim MWCNT film into shape of target insole.
- Fitting of the film into the shoe.



Results

- MWNT versus SWNT
 - Flexibility / malleability:
 - MWNTs work better: film is flexible / malleable
 - SWNT films are much more brittle
 - Temperature Rise
 - MWNTs gave a higher temperature rise than SWNTs

Results

Room Temperature Measurements:

- Both CNTs have linear relationship
- MWCNTs have better performance than SWCNTs for this application

Results Summary

Room Temperature Measurements:

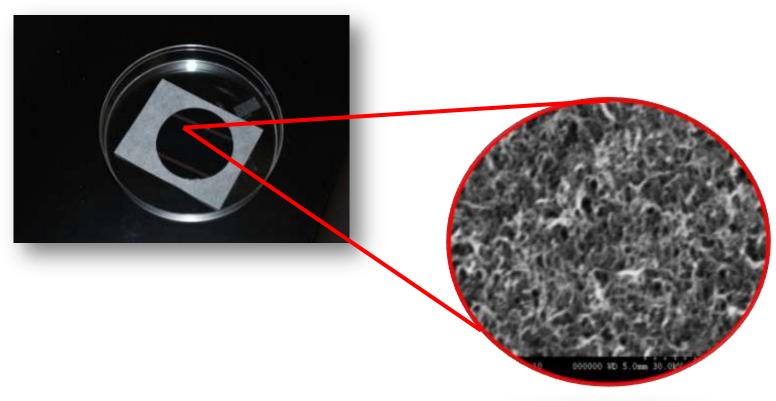
Type of Nanotube	Film Resistance (Ω)	Thickness (mm)	Temperature Change ΔT (°C)	Max. Attained Temp. (°C)
MWCNT	15	0.19	3.0	25.1
SWCNT	26	0.04	2.2	24.2

MWCNTs are therefore superior to SWCNTs for this application.

Live Testing

- MWNT Film testing outdoors (at -13°C):
 - Maximum ΔT: 5.6°C
 - Time to Max. Temperature: 2 minutes
 - Superior temperature change observed under colder temperatures than warmer.

Film Resistance Data


	Resistance with Gold Contact (Ω)	Resistance without Gold Contact (Ω)
MWCNT	15	18
SWCNT	26	32

• SWCNT film has a greater resistance than the MWCNT film

• Adding gold contacts with plasma sputtering significantly reduces contact resistance.

SEM Micrograph of Film

 Shows uniform dispersion and uniform density of MWNTs in film

Concluding Remarks

Specifications for 2010 -11 Sole Warmer	Requirements	Results
Heating Cutoff	40 °C	Not an issue
Minimum Temperature Change (ΔT _{min})	3°C	3ºC (Room) / 5.4ºC (Live)
Time to achieve ΔT _{min} (Ambient T > 10°C)	20 minutes	2 minutes
Time to achieve ΔT _{min} (Ambient T < 10°C)	30 minutes	Less than 2 minutes
Maximum Additional Shoe Weight	500 grams	234.8grams
Battery Type	9V	9V
CNT Mass	200 grams	36 grams

Recommended Improvements

Add on/off switch

- Viable option because insole heating occurs quickly
- Extends battery life
- Design a containment case for the film
 - Completely eliminates chances of exposure to MWNTs
 - Extends film performance by slowing degradation over time
 - Protection from moisture
 - Improve film integrity

Questions?

