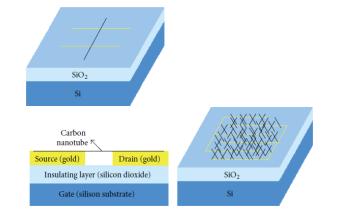
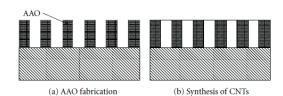


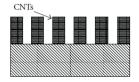
Improving Operating Temperature of Gas Sensors by Forming Heterojunctions

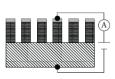
Rajesh Kumar

NE 469 Final Design Presentation Winter 2010

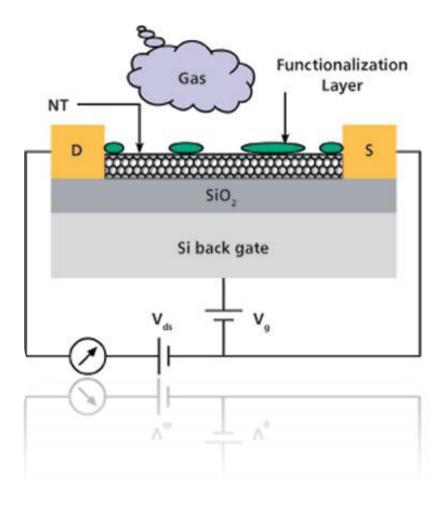



Summary from 1st Presentation


- CNT FET based Gas Sensors are:
 - Smaller in size
 - Consume less power
 - Have quick response
 - Great electronic properties


Drawbacks

- $_{\odot}~$ Slow and incomplete recovery
- Low sensitivity
- Require to be of defined structure and property
- Poor selectivity



(c) Open the CNTs

(d) Deposit Ag electrode

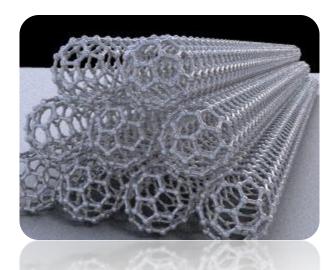
• State of the Art CNT Gas Sensor

3

Background

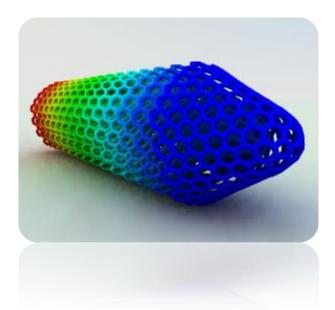
- Pure MO gas sensors at operated at 200-800 °C
- Pure CNT gas sensors have slow response and recovery

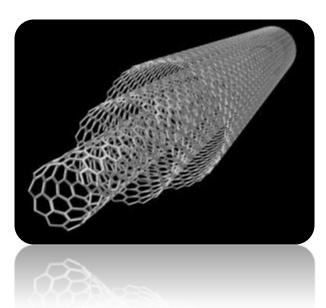
• Solution


- o Combine the two sensors to form a hybrid!
- Examples: SWCNT and SnO₂/TiO₂ nanocomposites
 - Incorporate SWCNT into MO substrate
 - Spin/Drop coat metallic solution dispersed with SWCNTs
 - MWCNTs/MO core/shell nanostructures to form p-n heterojunctions
 - Heat treatment to fuse composite

Expected Improvements

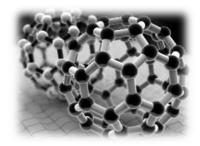
- Much higher response
- Quicker recovery
- Detect NO₂, H₂, NH₃, LPG, EtOH at room temp.
 - not possible previously
- Therefore reduces working temp.


• Rationale


- Composite yields improved electrical transport mechanism
- Resistance dominated by barriers among MO grains and grain boundaries
- $_{\circ}$ SWCNTs will form "nanopasses" \rightarrow Improve conduction
- Electrons travel in MO grains, then conduct in SWCNT with low R
- Depletion layer at CNT/MO interfaces
- Depletion layer at metal oxide grains
- o Gases adsorbed → Modulation of depletion layer → Change in resistance
- Gases like NH3 will bind less tightly to SWCNT improving recovery time

• Design Predictions

- Reducing molecules act like n-type dopants when interacting with CNTs
- $\circ~$ Leads to decrease in resistance
- $\circ~$ Leads to increase in response



• Design Considerations

- Electronic conduction in the hybrid material
- Preparation process of film
- Film thickness t (300nm or 600 nm?)
 - $_{\circ}$ Larger t \rightarrow less diffusion \rightarrow smaller response
- Wt % of MWCNT (5% or 25%?)
- Diameter *d* of MWCNT (60nm or 100 nm ?)
 - Larger *d* increases # of gas molecules adsorbed
- Annealing temperature T
 - $_{\circ}$ High T \rightarrow better contact between MO and CNTs
 - $_{\odot}$ Too high T \rightarrow burning of CNTs and structural damage
- Functionalization of CNT
 - Hydroxyl, oxygen, oxygen plasma, etc.

NE469 Winter 2010 Rajesh Kumai

Thank You

Questions?