Physics 12 IB Waves and Beats

Rajesh Swaminathan

June 18, 2006

6.7.2 Derivation of the Beat Frequency Formula

If we consider just one point on a one-dimensional sinusoidal wave travelling in the x-direction then we can represent the oscillation at that point by a sine function. Let the wave have an amplitude A and frequency f. The displacement y at a point x will vary with time as

$$
y=A \sin (2 \pi f t)
$$

Suppose we now have two waves of the same amplitude travelling in the same direction, one of frequency f_{1} and the other of frequency f_{2}. The displacement at a point x will now be the sum of the individual displacements of the waves (principle of linear superposition). That is

$$
Y=A \sin \left(2 \pi f_{1} t\right)+A \sin \left(2 \pi f_{2} t\right)
$$

Using the rule for adding sine functions we have

$$
\begin{equation*}
Y=2 A \cos \left(2 \frac{\pi}{2}\left(f_{1}-f_{2}\right) t\right) \sin \left(2 \frac{\pi}{2}\left(f_{1}+f_{2}\right) t\right) \tag{1}
\end{equation*}
$$

What this effectively means is that we have a new wave frequency $\frac{1}{2}\left(f_{1}+f_{2}\right)$ and with an amplitude which varies periodically with a frequency $f_{1}-f_{2}$. So for example if we sound two tuning forks together, one of frequency 440 Hz and the other of frequency 442 Hz , and both with the same intensity, we will hear a sound of twice the intensity of one of the forks but of frequency 401 Hz. The intensity reaches a maximum intensity twice every second and zero intensity twice every second. That is, the beat frequency is 2 Hz .

