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12 Rings and Fields

12.1 Definition Groups and Abelian Groups

Let R be a non-empty set. Let + and · (multiplication) be two binary (must be “closed”) operations
satisfying:

1. a+ b = b+ a (∀ a, b ∈ R)
2. (a+ b) + c = a+ (b+ c) (∀ a, b, c ∈ R)
3. There exists 0 ∈ R such that a+ 0 = a (∀ a ∈ R)
4. To each a ∈ R, there exists “−a” ∈ R so that a+ (−a) = 0

Just rules 2, 3, 4 make R a group. (R,+) is an Abelian group.

12.2 Definition Rings

5. (ab)c = a(bc) (∀ a, b, c ∈ R)
6. a · (b+ c) = ab+ ac (∀ a, b, c ∈ R)
7. (a+ b)c = ac+ bc (∀ a, b, c ∈ R)

12.3 Definition Commutative Rings

If ab = ba for all a, b ∈ R, we call R a commutative ring.

12.4 Definition Unity

A non-zero element of a ring R, 1, is called a unity if it is an identity element in multiplication.
Unity, if exists, is unique.

12.4 Theorem

1. In a ring (R,+, ·), to each a ∈ R, “−a” is unique, and 0 ∈ R is also unique.

2. a · 0 = 0 · a = 0 for all a ∈ R

3. a(−b) = (−a)b = −(ab)

4. (−a)(−b) = ab
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5. a(b− c) = ab− ac
(a− b)c = ac− bc

12.5 Definition Direct Sum

Construction of new rings from known ones. Let R1, R2, · · · , Rn be rings. Their direct sum R1 ⊕
R2 ⊕ · · · ⊕Rn is the set {(r1, r2, . . . , rn) | ri ∈ Ri} with the operations:

(r1, . . . , rn) + (s1, . . . , sn) = (r1 + s1, . . . , rn + sn)

(r1, . . . , rn)(s1, . . . , sn) = (r1s1, . . . , rnsn)

The Cartesian product with the above 2 operation is indeed a ring. It is called the direct sum of
R1, . . . , Rn

12.6 Definition Ring Isomorphisms

Let R and S be 2 rings. An isomorphism φ from R to S is a bijective mapping (also known as a one-
to-one correspondence) which preserves the algebraic (ring operations). Long form: if r1 + r2 = r3
in R, then φ(r1) + φ(r2) = φ(r3) in S and if r1r2 = r3 in R, then φ(r1)φ(r2) = φ(r3) in S.

In shorter form, φ(r1 + r2) = φ(r1) + φ(r2) and φ(r1r2) = φ(r1)φ(r2) for all r1, r2 ∈ R.

We say that R and S are isomorphic if an isomorphism exists from R to S, i.e. R ' S.

12.7 Theorem Chinese Remainder Theorem

If m, n are coprime (positive integers), then Zm ⊕ Zn ' Zmn

12.8 Proposition

For rings R1, R2, R3:

1. R1 ⊕R2 ' R2 ⊕R1

2. (R1 ⊕R2)⊕R3 ' R1 ⊕ (R2 ⊕R3)

That is ⊕ is commutative and associative.

12.9 Theorem

R ⊕ S is a ring with unity if and only if both R and S are rings with unity. In fact, if 1 ∈ R and
1̃ ∈ S are the unities of R and S respectively, then (1, 1̃) is the unity of R⊕ S, and vice versa.

12.10 Definition Unit

Let R be a ring with unity 1. An element a ∈ R is called a unit if it has a multiplicative inverse,
i.e. there exists a b in R so that ab = ba = 1. All units of R is denoted by U(R).

12.11 Definition Subrings

Let R be a ring, a subset S of R is a subring if it is by itself a ring under the operations of R.

12.12 Theorem Subring Test

A non-empty subset S of a ring R is a subring iff it is closed under subtraction and multiplication.

12.13 Theorem
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If R is a ring and F is a family of subrings of R, then the intersection of F = {x ∈ R | x ∈
S for everyS ∈ F} is a subring of R.

12.14 Theorem Generated Subrings

There exists a smallest subring of R which contains A (over all the subrings which contain A). We
call it the subring generated by A, denoted by 〈A〉.
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13 Integral Domains

13.1 Definition Zero Divisor

A zero divisor is a non-zero element of a commutative ring for which there exists a non-zero b ∈ R
so that ab = 0.

When a, b are both non-zero and ab = 0 in a commutative ring, then both a and b are zero divisors.

13.2 Definition Integral Domains

An integral domain is a commutative ring, with unity, without zero divisors. Thus, in an integral
domain, if ab = 0, then either a = 0 or b = 0.

13.3 Proposition Cancellation Law

In an integral domain, we have the cancellation law: if a 6= 0, and ab = ac (where b, c ∈ R) as well,
then b = c.

13.4 Terminology Injective Maps

A map f from set X to set Y is injective if f(b) = f(c)⇒ b = c.

13.5 Theorem

In an integral domain, left (or right) multiplication by a 6= 0 is an injective function of R to R:
f(x) = ax for all x ∈ R.

13.6 Corollary

If R is a finite integral domain, then (left) multiplication by a 6= 0 is surjective (in addition to
being injective).

Thus, every non-zero a in R (finite R) is a unit.

13.7 Definition Fields

A field is a commutative ring with unity where every non-zero element is a unit.

13.8 Corollary

Every finite integral domain is a field.

13.9 Proposition

Zm is an integral domain (field) iff m is prime.

13.10 Theorem

Every field is an integral domain.

13.11 Definition Embeddings of Rings

A ring R is said to be embedded in a ring S is there is an injective map f : R→ S preserving the
operations:

1. f(r1 + r2) = f(r1) + f(r2)
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2. f(r1r2) = f(r1) + f(r2)

for all r1, r2 ∈ R.

In terms of isomorphisms, f is an isomorphism between R and the image of R in S. The image is
a subring of S.

13.12 Proposition

If R1 can be embedded in R2, and that R2 can be embedded in R3, then R1 can be embedded in
R3.

13.13 Question

If R1 can be embedded in R2 and R2 can be embedded in R1, does it imply that R1 and R2 are
isomorphic?

13.14 Proposition

1. If F is a field, and S ⊂ F is a subring, then S is commutative. Further, if S has unity, then
S is an integral domain.

2. If R can be embedded in a field F , and R has unity, then R is an integral domain.
3. A ring R is an integral domain iff it can be embedded in a field and R has a unity matching

the unity of F .

13.15 Definition Ring Characteristics

Let R be a ring. The least positive integer n such that

a+ · · ·+ a (n− fold) = 0

for all a ∈ R is called the characteristic of R. If no positive integer n gives such a line, we say that
the characteristic of R is 0.

13.16 Proposition

If R has a unity, then its characteristic is equal to the first (least) positive n so that 1 + · · · + 1
(n-fold) = 0. If there is no such n, the characteristic will be 0.

13.17 Proposition

For an integral domain, the characteristic is either 0 or a prime.
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14 Ideals and Factor Rings

14.1 Definition Ideals

Let R be a ring. An ideal I is a subring which is closed under left and right multiplications by
elements of R, i.e. a ∈ I ⇒ ra ∈ I and ar ∈ I

14.2 Theorem

Consider R[x]. Let I = {p(x) ∈ R[x] | p(
√

2) = 0}. Then it is an ideal.

14.3 Theorem

Let R be a ring and let a ⊂ R be a subset. Then there exists a smallest ideal of R which contains
A.

14.4 Definition Generated Ideals

We call ∩F the ideal generated by the subset A.

14.5 Definition Quotient Rings

Let R be a ring and I be an ideal of R. Let R/I denote the partition of the set R by the cosets of
I, i.e. by {r + I | r ∈ R} (needs to be justified). The set is called the quotient set.

On the quotient set, we define (r1 + I) + (r2 + I) = (r1 + r2) + I.

R/I under the above operation is a ring. It is called the quotient ring.

14.6 Definition Ring Homomorphisms

Let R and S be rings, a map f : R→ S is a ring homomorphism if it satisfies:

f(r1 + r2) = f(r1) + f(r2)

f(r1r2) = f(r1)f(r2)

for all r1, r2 ∈ R. Between any two rings R and S, homomorphisms always exist, eg. f ≡ 0 (the
trivial homomorphism).

14.7 Theorem

Let f : R→ S be a ring homomorphism. Then

1. If R1 is a subring of R, then f(R1) = {f(r) | r ∈ R1} is a subring.
2. If I1 is an ideal of R, then the image f(I1) is not necessarily an ideal of S.
3. Let S1 be a subring of S. Then the pre-image f−1(S1) = {r ∈ R | f(r) ∈ S1} is a subring of
R.

4. If J1 is an ideal of the co-domain S, then f−1(J1) = {r ∈ R | f(r) ∈ J1} is an ideal of R.

14.8 Proposition

If f : R→ S is a surjective (everything in S is used and tight) ring homomorphism, then the image
of an ideal in R is an ideal in S.
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14.9 Definition

Let R be a commutative ring, and I is an ideal of R.

1. I is proper if I 6= R (some books also rule out {0})
2. I is prime if it is proper and has the property a, b ∈ R, ab ∈ I ⇒ a ∈ I or b ∈ I
3. I is maximal if there are no ideals J or R which is truly in between I and R, i.e. the only

ideal I satisfying I ⊂ J ⊂ R are J = I or R.

14.10 Theorem

Let R be a commutative ring with unity 1. Let I be a proper ideal of R. Then

i. I is prime iff R/I is an integral domain.
ii. I is maximal iff R/I is a field.

14.11 Corollary

Maximal ideals are prime.

14.12 Theorem

If φ : R→ S is a ring homomorphism, if R has a unity and if φ is surjective, then φ(1) is the unity
of S, i.e. φ(1) = 1.

14.13 Theorem

A ring homomorphism φ : R→ S is injective if and only if Ker φ = {0}.

14.14 Corollary

If F is a filed and φ : F → S is a ring homomorphism, then φ is either the zero map or it is an
embedding of F into S.

14.15 Theorem The Fundamental Theorem of Ring Homomorphisms or The First Isomorphism
Theorem

Let φ : R→ S be a ring homomorphism. Then R/Ker(φ) ' φ(R).

14.16 Definition

Let F1 and F2 be two fields. We say that F1 is an extension of F2 if F2 ⊂ F1 as a subfield, or more
generally, there exists and embedding φ : F2 → F1. For example, C is a field extension of R.

14.17 Proposition

If F1 is an extension of F2, and F2 is a extension of F3, then F1 is an extension of F3 (transitive).

14.18 Proposition

Let F be a field. Suppose that char(F )=0. Then F is field extension of the field of rationales Q.

14.19 Proposition

Let F be a field, and let the char(F ) = p, a finite strictly positive integer. Then p must be a prime.
Moreover, the subfield generated by 1 in F is isomorphic to Zp. Hence F is an extension of Zp.
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14.20 Theorem

Let E be a field extension of F . Then E is a vector space over F .

14.21 Theorem (from linear algebra)

Every vector space over a field F has a basis.

14.22 Corollary

Let E be a finite field. Let char(E) = p, where p is prime. So, E is a field extension of Zp. Let B
be a basis for E over Zp. B must then be finite. If |B| = n, then E ' Zn (as vector spaces over
Zp).

14.23 Corollary

No field can be of size 10, as 10 is not prime.

14.24 Claim

For every prime p, and positive integer n, there exists a field who size is pn. Moreover, any 2 such
fields having size pn are isomorphic.

∗ − − ∗ − − ∗ − − ∗ − − ∗
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