Rings and Fields Theorems

Rajesh Kumar PMATH 334 – Intro to Rings and Fields Fall 2009

October 25, 2009

12 Rings and Fields

12.1 Definition Groups and Abelian Groups

Let R be a non-empty set. Let + and \cdot (multiplication) be two *binary* (must be "closed") operations satisfying:

- 1. $a + b = b + a \ (\forall a, b \in R)$
- 2. $(a+b) + c = a + (b+c) \ (\forall a, b, c \in R)$
- 3. There exists $0 \in R$ such that $a + 0 = a \ (\forall a \in R)$
- 4. To each $a \in R$, there exists "-a" $\in R$ so that a + (-a) = 0

Just rules 2, 3, 4 make R a group. (R, +) is an Abelian group.

12.2 Definition *Rings*

- 5. $(ab)c = a(bc) \ (\forall a, b, c \in R)$
- 6. $a \cdot (b+c) = ab + ac \ (\forall a, b, c \in R)$
- 7. $(a+b)c = ac + bc \ (\forall a, b, c \in R)$

12.3 Definition Commutative Rings

If ab = ba for all $a, b \in R$, we call R a *commutative* ring.

12.4 Definition Unity

A non-zero element of a ring R, 1, is called a *unity* if it is an identity element in multiplication. Unity, if exists, is unique.

12.4 Theorem

- 1. In a ring $(R, +, \cdot)$, to each $a \in R$, "-a" is unique, and $0 \in R$ is also unique.
- 2. $a \cdot 0 = 0 \cdot a = 0$ for all $a \in R$
- 3. a(-b) = (-a)b = -(ab)
- 4. (-a)(-b) = ab

5. a(b-c) = ab - ac(a-b)c = ac - bc

12.5 Definition *Direct Sum*

Construction of new rings from known ones. Let R_1, R_2, \dots, R_n be rings. Their direct sum $R_1 \oplus R_2 \oplus \dots \oplus R_n$ is the set $\{(r_1, r_2, \dots, r_n) \mid r_i \in R_i\}$ with the operations:

$$(r_1, \dots, r_n) + (s_1, \dots, s_n) = (r_1 + s_1, \dots, r_n + s_n)$$

 $(r_1,\ldots,r_n)(s_1,\ldots,s_n)=(r_1s_1,\ldots,r_ns_n)$

The Cartesian product with the above 2 operation is indeed a ring. It is called the *direct sum* of R_1, \ldots, R_n

12.6 Definition Ring Isomorphisms

Let R and S be 2 rings. An isomorphism ϕ from R to S is a *bijective* mapping (also known as a *one-to-one correspondence*) which preserves the algebraic (ring operations). Long form: if $r_1 + r_2 = r_3$ in R, then $\phi(r_1) + \phi(r_2) = \phi(r_3)$ in S and if $r_1r_2 = r_3$ in R, then $\phi(r_1)\phi(r_2) = \phi(r_3)$ in S.

In shorter form, $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$ and $\phi(r_1r_2) = \phi(r_1)\phi(r_2)$ for all $r_1, r_2 \in R$.

We say that R and S are isomorphic if an isomorphism exists from R to S, i.e. $R \simeq S$.

12.7 Theorem Chinese Remainder Theorem

If m, n are coprime (positive integers), then $\mathbb{Z}_m \oplus \mathbb{Z}_n \simeq \mathbb{Z}_{mn}$

12.8 Proposition

For rings R_1, R_2, R_3 :

- 1. $R_1 \oplus R_2 \simeq R_2 \oplus R_1$
- 2. $(R_1 \oplus R_2) \oplus R_3 \simeq R_1 \oplus (R_2 \oplus R_3)$

That is \oplus is commutative and associative.

12.9 Theorem

 $R \oplus S$ is a ring with unity if and only if both R and S are rings with unity. In fact, if $1 \in R$ and $\tilde{1} \in S$ are the unities of R and S respectively, then $(1, \tilde{1})$ is the unity of $R \oplus S$, and vice versa.

12.10 Definition Unit

Let R be a ring with unity 1. An element $a \in R$ is called a *unit* if it has a multiplicative inverse, i.e. there exists a b in R so that ab = ba = 1. All units of R is denoted by U(R).

12.11 Definition Subrings

Let R be a ring, a subset S of R is a *subring* if it is by itself a ring under the operations of R.

12.12 Theorem Subring Test

A non-empty subset S of a ring R is a subring iff it is closed under subtraction and multiplication.

12.13 Theorem

If R is a ring and \mathcal{F} is a family of subrings of R, then the intersection of $\mathcal{F} = \{x \in R \mid x \in S \text{ for every} S \in \mathcal{F}\}$ is a subring of R.

12.14 Theorem Generated Subrings

There exists a smallest subring of R which contains A (over all the subrings which contain A). We call it the subring generated by A, denoted by $\langle A \rangle$.

13 Integral Domains

13.1 Definition Zero Divisor

A zero divisor is a *non-zero* element of a *commutative* ring for which there exists a non-zero $b \in R$ so that ab = 0.

When a, b are both non-zero and ab = 0 in a commutative ring, then both a and b are zero divisors.

13.2 Definition Integral Domains

An integral domain is a commutative ring, with unity, without zero divisors. Thus, in an integral domain, if ab = 0, then either a = 0 or b = 0.

13.3 Proposition Cancellation Law

In an integral domain, we have the cancellation law: if $a \neq 0$, and ab = ac (where $b, c \in R$) as well, then b = c.

13.4 Terminology Injective Maps

A map f from set X to set Y is *injective* if $f(b) = f(c) \Rightarrow b = c$.

13.5 Theorem

In an integral domain, left (or right) multiplication by $a \neq 0$ is an injective function of R to R: f(x) = ax for all $x \in R$.

13.6 Corollary

If R is a *finite* integral domain, then (left) multiplication by $a \neq 0$ is surjective (in addition to being injective).

Thus, every non-zero a in R (finite R) is a unit.

13.7 Definition Fields

A *field* is a commutative ring with unity where every non-zero element is a unit.

13.8 Corollary

Every finite integral domain is a field.

13.9 Proposition

 \mathbb{Z}_m is an integral domain (field) iff *m* is *prime*.

13.10 Theorem

Every field is an integral domain.

13.11 Definition Embeddings of Rings

A ring R is said to be embedded in a ring S is there is an *injective* map $f : R \to S$ preserving the operations:

1. $f(r_1 + r_2) = f(r_1) + f(r_2)$

2.
$$f(r_1r_2) = f(r_1) + f(r_2)$$

for all $r_1, r_2 \in R$.

In terms of isomorphisms, f is an isomorphism between R and the image of R in S. The image is a subring of S.

13.12 Proposition

If R_1 can be embedded in R_2 , and that R_2 can be embedded in R_3 , then R_1 can be embedded in R_3 .

13.13 Question

If R_1 can be embedded in R_2 and R_2 can be embedded in R_1 , does it imply that R_1 and R_2 are isomorphic?

13.14 Proposition

- 1. If F is a field, and $S \subset F$ is a subring, then S is commutative. Further, if S has unity, then S is an integral domain.
- 2. If R can be embedded in a field F, and R has unity, then R is an integral domain.
- 3. A ring R is an integral domain iff it can be embedded in a field and R has a unity matching the unity of F.

13.15 Definition Ring Characteristics

Let R be a ring. The least *positive* integer n such that

$$a + \dots + a (n - fold) = 0$$

for all $a \in R$ is called the *characteristic* of R. If no positive integer n gives such a line, we say that the characteristic of R is 0.

13.16 Proposition

If R has a unity, then its characteristic is equal to the first (least) positive n so that $1 + \cdots + 1$ (n-fold) = 0. If there is no such n, the characteristic will be 0.

13.17 Proposition

For an integral domain, the characteristic is either 0 or a prime.

14 Ideals and Factor Rings

14.1 Definition Ideals

Let R be a ring. An *ideal* I is a subring which is closed under left and right multiplications by elements of R, i.e. $a \in I \Rightarrow ra \in I$ and $ar \in I$

14.2 Theorem

Consider $\mathbb{R}[x]$. Let $I = \{p(x) \in \mathbb{R}[x] \mid p(\sqrt{2}) = 0\}$. Then it is an ideal.

14.3 Theorem

Let R be a ring and let $a \subset R$ be a subset. Then there exists a smallest ideal of R which contains A.

14.4 Definition Generated Ideals

We call $\cap \mathcal{F}$ the ideal generated by the subset A.

14.5 Definition Quotient Rings

Let R be a ring and I be an ideal of R. Let R/I denote the partition of the set R by the cosets of I, i.e. by $\{r + I \mid r \in R\}$ (needs to be justified). The set is called the quotient set.

On the quotient set, we define $(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$.

R/I under the above operation is a ring. It is called the *quotient ring*.

14.6 Definition Ring Homomorphisms

Let R and S be rings, a map $f: R \to S$ is a ring homomorphism if it satisfies:

$$f(r_1 + r_2) = f(r_1) + f(r_2)$$
$$f(r_1r_2) = f(r_1)f(r_2)$$

for all $r_1, r_2 \in R$. Between any two rings R and S, homomorphisms always exist, eg. $f \equiv 0$ (the trivial homomorphism).

14.7 Theorem

Let $f: R \to S$ be a ring homomorphism. Then

- 1. If R_1 is a subring of R, then $f(R_1) = \{f(r) \mid r \in R_1\}$ is a subring.
- 2. If I_1 is an ideal of R, then the image $f(I_1)$ is not necessarily an ideal of S.
- 3. Let S_1 be a subring of S. Then the pre-image $f^{-1}(S_1) = \{r \in R \mid f(r) \in S_1\}$ is a subring of R.
- 4. If J_1 is an ideal of the co-domain S, then $f^{-1}(J_1) = \{r \in R \mid f(r) \in J_1\}$ is an ideal of R.

14.8 Proposition

If $f: R \to S$ is a *surjective* (everything in S is used and tight) ring homomorphism, then the image of an ideal in R is an ideal in S.

14.9 Definition

Let R be a *commutative ring*, and I is an ideal of R.

- 1. *I* is proper if $I \neq R$ (some books also rule out $\{0\}$)
- 2. *I* is prime if it is proper and has the property $a, b \in R, ab \in I \Rightarrow a \in I$ or $b \in I$
- 3. *I* is *maximal* if there are no ideals *J* or *R* which is truly in between *I* and *R*, i.e. the only ideal *I* satisfying $I \subset J \subset R$ are J = I or *R*.

14.10 Theorem

Let R be a commutative ring with unity 1. Let I be a proper ideal of R. Then

- i. I is prime iff R/I is an integral domain.
- ii. I is maximal iff R/I is a field.

14.11 Corollary

Maximal ideals are prime.

14.12 Theorem

If $\phi : R \to S$ is a ring homomorphism, if R has a unity and if ϕ is surjective, then $\phi(1)$ is the unity of S, i.e. $\phi(1) = 1$.

14.13 Theorem

A ring homomorphism $\phi : R \to S$ is *injective* if and only if Ker $\phi = \{0\}$.

14.14 Corollary

If F is a filed and $\phi: F \to S$ is a ring homomorphism, then ϕ is either the zero map or it is an embedding of F into S.

14.15 Theorem The Fundamental Theorem of Ring Homomorphisms or The First Isomorphism Theorem

Let $\phi : R \to S$ be a ring homomorphism. Then $R/Ker(\phi) \simeq \phi(R)$.

14.16 Definition

Let F_1 and F_2 be two fields. We say that F_1 is an extension of F_2 if $F_2 \subset F_1$ as a subfield, or more generally, there exists and embedding $\phi : F_2 \to F_1$. For example, \mathbb{C} is a field extension of \mathbb{R} .

14.17 Proposition

If F_1 is an extension of F_2 , and F_2 is a extension of F_3 , then F_1 is an extension of F_3 (transitive).

14.18 Proposition

Let F be a field. Suppose that char(F)=0. Then F is field extension of the field of rationales \mathbb{Q} .

14.19 Proposition

Let F be a field, and let the char(F) = p, a finite strictly positive integer. Then p must be a prime. Moreover, the subfield generated by 1 in F is isomorphic to \mathbb{Z}_p . Hence F is an extension of \mathbb{Z}_p .

14.20 Theorem

Let E be a field extension of F. Then E is a vector space over F.

14.21 Theorem (from linear algebra)

Every vector space over a field F has a basis.

14.22 Corollary

Let *E* be a *finite field*. Let char(*E*) = *p*, where *p* is prime. So, *E* is a field extension of \mathbb{Z}_p . Let *B* be a basis for *E* over \mathbb{Z}_p . *B* must then be finite. If |B| = n, then $E \simeq \mathbb{Z}^n$ (as vector spaces over \mathbb{Z}_p).

14.23 Corollary

No field can be of size 10, as 10 is not prime.

14.24 Claim

For every prime p, and positive integer n, there exists a field who size is p^n . Moreover, any 2 such fields having size p^n are *isomorphic*.

* - - * - - * - - *