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12 Rings and Fields

12.1 Definition Groups and Abelian Groups

Let R be a non-empty set. Let + and - (multiplication) be two binary (must be “closed”) operations
satisfying:

l.a+b=b+a (VabeR)

2. (a+b)+c=a+((b+c) (VabceR)

3. There exists 0 € R such that a +0=a (V a € R)

4. To each a € R, there exists “—a” € R so that a + (—a) =0

Just rules 2, 3, 4 make R a group. (R,+) is an Abelian group.
12.2 Definition Rings

5. (ab)c = a(be) (V a,b,c € R)
6. a-(b+c)=ab+ac (Va,bce€R)
7. (a+b)c=ac+bc (¥ a,b,ceR)

12.3 Definition Commutative Rings
If ab = ba for all a,b € R, we call R a commutative ring.
12.4 Definition Unity

A non-zero element of a ring R, 1, is called a wunity if it is an identity element in multiplication.
Unity, if exists, is unique.

12.4 Theorem
1. In a ring (R, +, "), to each a € R, “—a” is unique, and 0 € R is also unique.
2.a-0=0-a=0forallaec R
3. a(=b) = (—a)b = —(ab)
4. (—a)(—b) = ab



5. a(b—c) =ab—ac
(a —b)e =ac—be

12.5 Definition Direct Sum

Construction of new rings from known ones. Let Ry, Ry, -, R, be rings. Their direct sum R ®
Ry @& -+ ® R, is the set {(r1,r2,...,7,) | 7 € R;} with the operations:

(Tl,...,Tn)—l-(Sl,...,Sn) :(T1+81,--.,Tn+8n)
(riy.eoymn)(S1y. vy 8n) = (F1S1, .., TnSn)

The Cartesian product with the above 2 operation is indeed a ring. It is called the direct sum of
Ry,...,R,

12.6 Definition Ring Isomorphisms

Let R and S be 2 rings. An isomorphism ¢ from R to S is a bijective mapping (also known as a one-
to-one correspondence) which preserves the algebraic (ring operations). Long form: if 71 4+ r9 = 73
in R, then ¢(r1) + ¢(r2) = ¢(r3) in S and if 179 = r3 in R, then ¢(r1)p(re2) = ¢(r3) in S.

In shorter form, ¢(r1 + 1r2) = ¢(r1) + ¢(r2) and ¢(rire) = ¢(r1)P(re) for all r1,r2 € R.
We say that R and .S are isomorphic if an isomorphism exists from R to S, i.e. R~ S.
12.7 Theorem Chinese Remainder Theorem

If m, n are coprime (positive integers), then Z,, ® Z, ~ Zmn

12.8 Proposition

For rings Ry, Rs, R3:

1. Ri® Ry~ Ry ® Ry
2. (R1® R2) ® R3 ~ R @ (Ry © R3)

That is @ is commutative and associative.
12.9 Theorem

R @® S is a ring with unity if and only if both R and S are rings with unity. In fact, if 1 € R and
1 € S are the unities of R and S respectively, then (1, 1) is the unity of R & S, and vice versa.

12.10 Definition Unit

Let R be a ring with unity 1. An element a € R is called a unit if it has a multiplicative inverse,
i.e. there exists a b in R so that ab = ba = 1. All units of R is denoted by U(R).

12.11 Definition Subrings

Let R be a ring, a subset .S of R is a subring if it is by itself a ring under the operations of R.
12.12 Theorem Subring Test

A non-empty subset S of a ring R is a subring iff it is closed under subtraction and multiplication.

12.13 Theorem



If R is a ring and F is a family of subrings of R, then the intersection of ¥ = {x € R | = €
S for everyS € F} is a subring of R.

12.14 Theorem Generated Subrings

There exists a smallest subring of R which contains A (over all the subrings which contain A). We
call it the subring generated by A, denoted by (A).



13 Integral Domains

13.1 Definition Zero Divisor

A zero divisor is a non-zero element of a commutative ring for which there exists a non-zero b € R
so that ab = 0.

When a, b are both non-zero and ab = 0 in a commutative ring, then both a and b are zero divisors.
13.2 Definition Integral Domains

An integral domain is a commutative ring, with unity, without zero divisors. Thus, in an integral
domain, if ab = 0, then either a = 0 or b = 0.

13.3 Proposition Cancellation Law

In an integral domain, we have the cancellation law: if @ # 0, and ab = ac (where b, c € R) as well,
then b = c.

13.4 Terminology Injective Maps
A map f from set X to set Y is injective if f(b) = f(c) = b=c.
13.5 Theorem

In an integral domain, left (or right) multiplication by a # 0 is an injective function of R to R:
f(x) = ax for all z € R.

13.6 Corollary

If R is a finite integral domain, then (left) multiplication by a # 0 is surjective (in addition to
being injective).

Thus, every non-zero a in R (finite R) is a unit.

13.7 Definition Fields

A field is a commutative ring with unity where every non-zero element is a unit.
13.8 Corollary

Every finite integral domain is a field.

13.9 Proposition

Zy, is an integral domain (field) iff m is prime.

13.10 Theorem

Every field is an integral domain.

13.11 Definition Embeddings of Rings

A ring R is said to be embedded in a ring S is there is an injective map f : R — S preserving the
operations:

L f(r1+r2) = f(r1) + f(r2)



2. f(rir2) = f(r1) + f(r2)
for all 1,79 € R.

In terms of isomorphisms, f is an isomorphism between R and the image of R in .S. The image is
a subring of S.

13.12 Proposition

If Ry can be embedded in Ro, and that Ry can be embedded in R3, then R; can be embedded in
R3.

13.13 Question

If Ry can be embedded in Rs and Ry can be embedded in R;, does it imply that R; and Ry are
isomorphic?

13.14 Proposition

1. If F'is a field, and S C F is a subring, then S is commutative. Further, if S has unity, then
S is an integral domain.

2. If R can be embedded in a field F', and R has unity, then R is an integral domain.

3. A ring R is an integral domain iff it can be embedded in a field and R has a unity matching
the unity of F.

13.15 Definition Ring Characteristics

Let R be a ring. The least positive integer n such that

a+---+a(n—fold) =0
for all a € R is called the characteristic of R. If no positive integer n gives such a line, we say that
the characteristic of R is 0.
13.16 Proposition

If R has a unity, then its characteristic is equal to the first (least) positive n so that 1 +--- + 1
(n-fold) = 0. If there is no such n, the characteristic will be 0.

13.17 Proposition

For an integral domain, the characteristic is either 0 or a prime.



14 Ideals and Factor Rings

14.1 Definition Ideals

Let R be a ring. An ideal I is a subring which is closed under left and right multiplications by
elements of R, i.e. a€ I =rac€landar €l

14.2 Theorem
Consider R[z]. Let I = {p(z) € R[z] | p(v/2) = 0}. Then it is an ideal.
14.3 Theorem

Let R be a ring and let a C R be a subset. Then there exists a smallest ideal of R which contains
A.

14.4 Definition Generated Ideals
We call NF the ideal generated by the subset A.
14.5 Definition Quotient Rings

Let R be a ring and I be an ideal of R. Let R/I denote the partition of the set R by the cosets of
I,ie. by {r+1|r e R} (needs to be justified). The set is called the quotient set.

On the quotient set, we define (11 + 1) + (ro + 1) = (r1 +r2) + 1.
R/I under the above operation is a ring. It is called the quotient ring.
14.6 Definition Ring Homomorphisms

Let R and S be rings, a map f: R — S is a ring homomorphism if it satisfies:

flri+re) = f(r) + f(r2)
f(rire) = f(r1)f(r2)
for all 71,79 € R. Between any two rings R and S, homomorphisms always exist, eg. f = 0 (the
trivial homomorphism).
14.7 Theorem
Let f: R — S be a ring homomorphism. Then

1. If Ry is a subring of R, then f(R1) = {f(r) | r € Ry} is a subring.

2. If I is an ideal of R, then the image f(I;) is not necessarily an ideal of S.

3. Let S be a subring of S. Then the pre-image f~(S1) = {r € R| f(r) € Si} is a subring of
R.

4. If Jp is an ideal of the co-domain S, then f~(J;) = {r € R | f(r) € J1} is an ideal of R.

14.8 Proposition

If f: R— S is a surjective (everything in S is used and tight) ring homomorphism, then the image
of an ideal in R is an ideal in S.



14.9 Definition
Let R be a commutative ring, and I is an ideal of R.

1. I is proper if I # R (some books also rule out {0})

2. I is prime if it is proper and has the property a,b € R,abe [ == aclorbe [

3. I is maximal if there are no ideals J or R which is truly in between I and R, i.e. the only
ideal I satisfying I C J C R are J =1 or R.

14.10 Theorem
Let R be a commutative ring with unity 1. Let I be a proper ideal of R. Then

i. [ is prime iff R/ is an integral domain.
ii. I is maximal iff R/I is a field.

14.11 Corollary
Maximal ideals are prime.
14.12 Theorem

If ¢ : R — S is a ring homomorphism, if R has a unity and if ¢ is surjective, then ¢(1) is the unity
of S, ie ¢(1)=1.

14.13 Theorem
A ring homomorphism ¢ : R — S is injective if and only if Ker ¢ = {0}.
14.14 Corollary

If F'is a filed and ¢ : F' — S is a ring homomorphism, then ¢ is either the zero map or it is an
embedding of F' into S.

14.15 Theorem The Fundamental Theorem of Ring Homomorphisms or The First Isomorphism
Theorem

Let ¢ : R — S be a ring homomorphism. Then R/Ker(¢) ~ ¢(R).
14.16 Definition

Let F1 and F5 be two fields. We say that Fj is an extension of Fy if F5 C F) as a subfield, or more
generally, there exists and embedding ¢ : F5, — F;. For example, C is a field extension of R.

14.17 Proposition
If Fy is an extension of Fy, and Fj is a extension of F3, then F} is an extension of Fj (transitive).
14.18 Proposition
Let F be a field. Suppose that char(F)=0. Then F is field extension of the field of rationales Q.
14.19 Proposition

Let F be a field, and let the char(F') = p, a finite strictly positive integer. Then p must be a prime.
Moreover, the subfield generated by 1 in F' is isomorphic to Z,. Hence F' is an extension of Z,,.



14.20 Theorem

Let E be a field extension of F. Then E is a vector space over F'.
14.21 Theorem (from linear algebra)

Every vector space over a field F' has a basis.

14.22 Corollary

Let E be a finite field. Let char(E) = p, where p is prime. So, E is a field extension of Z,. Let B
be a basis for E over Z,. B must then be finite. If |B| = n, then E ~ Z" (as vector spaces over
Ly).

14.23 Corollary
No field can be of size 10, as 10 is not prime.
14.24 Claim

For every prime p, and positive integer n, there exists a field who size is p™. Moreover, any 2 such
fields having size p” are isomorphic.

¥ — —k — — % — — %k — — %



