12 Rings and Fields

12.1 Definition Groups and Abelian Groups
Let R be a non-empty set. Let $+$ and \cdot (multiplication) be two binary (must be “closed”) operations satisfying:

1. $a + b = b + a$ ($\forall a, b \in R$)
2. $(a + b) + c = a + (b + c)$ ($\forall a, b, c \in R$)
3. There exists $0 \in R$ such that $a + 0 = a$ ($\forall a \in R$)
4. To each $a \in R$, there exists $" - a " \in R$ so that $a + (- a) = 0$

Just rules 2, 3, 4 make R a group. $(R, +)$ is an Abelian group.

12.2 Definition Rings

5. $(ab)c = a(bc)$ ($\forall a, b, c \in R$)
6. $a \cdot (b + c) = ab + ac$ ($\forall a, b, c \in R$)
7. $(a + b)c = ac + bc$ ($\forall a, b, c \in R$)

12.3 Definition Commutative Rings
If $ab = ba$ for all $a, b \in R$, we call R a commutative ring.

12.4 Definition Unity
A non-zero element of a ring R, 1, is called a unity if it is an identity element in multiplication. Unity, if exists, is unique.

12.4 Theorem
1. In a ring $(R, +, \cdot)$, to each $a \in R$, “$ - a $” is unique, and $0 \in R$ is also unique.
2. $a \cdot 0 = 0 \cdot a = 0$ for all $a \in R$
3. $a(-b) = (-a)b = -(ab)$
4. $(-a)(-b) = ab$
5. $a(b - c) = ab - ac$
 $(a - b)c = ac - bc$

12.5 Definition Direct Sum

Construction of new rings from known ones. Let R_1, R_2, \cdots, R_n be rings. Their direct sum $R_1 \oplus R_2 \oplus \cdots \oplus R_n$ is the set $\{(r_1, r_2, \ldots, r_n) \mid r_i \in R_i\}$ with the operations:

$(r_1, \ldots, r_n) + (s_1, \ldots, s_n) = (r_1 + s_1, \ldots, r_n + s_n)$

$(r_1, \ldots, r_n)(s_1, \ldots, s_n) = (r_1 s_1, \ldots, r_n s_n)$

The Cartesian product with the above 2 operation is indeed a ring. It is called the direct sum of R_1, \ldots, R_n.

12.6 Definition Ring Isomorphisms

Let R and S be 2 rings. An isomorphism ϕ from R to S is a bijective mapping (also known as a one-to-one correspondence) which preserves the algebraic (ring operations). Long form: if $r_1 + r_2 = r_3$ in R, then $\phi(r_1) + \phi(r_2) = \phi(r_3)$ in S and if $r_1 r_2 = r_3$ in R, then $\phi(r_1)\phi(r_2) = \phi(r_3)$ in S.

In shorter form, $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$ and $\phi(r_1 r_2) = \phi(r_1)\phi(r_2)$ for all $r_1, r_2 \in R$.

We say that R and S are isomorphic if an isomorphism exists from R to S, i.e. $R \cong S$.

12.7 Theorem Chinese Remainder Theorem

If m, n are coprime (positive integers), then $\mathbb{Z}_m \oplus \mathbb{Z}_n \cong \mathbb{Z}_{mn}$

12.8 Proposition

For rings R_1, R_2, R_3:

1. $R_1 \oplus R_2 \simeq R_2 \oplus R_1$
2. $(R_1 \oplus R_2) \oplus R_3 \simeq R_1 \oplus (R_2 \oplus R_3)$

That is \oplus is commutative and associative.

12.9 Theorem

$R \oplus S$ is a ring with unity if and only if both R and S are rings with unity. In fact, if $1 \in R$ and $\bar{1} \in S$ are the unities of R and S respectively, then $(1, \bar{1})$ is the unity of $R \oplus S$, and vice versa.

12.10 Definition Unit

Let R be a ring with unity 1. An element $a \in R$ is called a unit if it has a multiplicative inverse, i.e. there exists a b in R so that $ab = ba = 1$. All units of R is denoted by $U(R)$.

12.11 Definition Subrings

Let R be a ring, a subset S of R is a subring if it is by itself a ring under the operations of R.

12.12 Theorem Subring Test

A non-empty subset S of a ring R is a subring iff it is closed under subtraction and multiplication.

12.13 Theorem

2
If R is a ring and \mathcal{F} is a family of subrings of R, then the intersection of $\mathcal{F} = \{x \in R \mid x \in S \text{ for every } S \in \mathcal{F}\}$ is a subring of R.

12.14 Theorem Generated Subrings

There exists a smallest subring of R which contains A (over all the subrings which contain A). We call it the subring generated by A, denoted by $\langle A \rangle$.
13 Integral Domains

13.1 Definition Zero Divisor
A zero divisor is a non-zero element of a commutative ring for which there exists a non-zero \(b \in R \) so that \(ab = 0 \).

When \(a, b \) are both non-zero and \(ab = 0 \) in a commutative ring, then both \(a \) and \(b \) are zero divisors.

13.2 Definition Integral Domains
An integral domain is a commutative ring, with unity, without zero divisors. Thus, in an integral domain, if \(ab = 0 \), then either \(a = 0 \) or \(b = 0 \).

13.3 Proposition Cancellation Law
In an integral domain, we have the cancellation law: if \(a \neq 0 \), and \(ab = ac \) (where \(b, c \in R \)) as well, then \(b = c \).

13.4 Terminology Injective Maps
A map \(f \) from set \(X \) to set \(Y \) is injective if \(f(b) = f(c) \Rightarrow b = c \).

13.5 Theorem
In an integral domain, left (or right) multiplication by \(a \neq 0 \) is an injective function of \(R \) to \(R \): \(f(x) = ax \) for all \(x \in R \).

13.6 Corollary
If \(R \) is a finite integral domain, then (left) multiplication by \(a \neq 0 \) is surjective (in addition to being injective).

Thus, every non-zero \(a \) in \(R \) (finite \(R \)) is a unit.

13.7 Definition Fields
A field is a commutative ring with unity where every non-zero element is a unit.

13.8 Corollary
Every finite integral domain is a field.

13.9 Proposition
\(\mathbb{Z}_m \) is an integral domain (field) iff \(m \) is prime.

13.10 Theorem
Every field is an integral domain.

13.11 Definition Embeddings of Rings
A ring \(R \) is said to be embedded in a ring \(S \) if there is an injective map \(f : R \to S \) preserving the operations:

1. \(f(r_1 + r_2) = f(r_1) + f(r_2) \)
2. \[f(r_1r_2) = f(r_1) + f(r_2) \]
for all \(r_1, r_2 \in R \).

In terms of isomorphisms, \(f \) is an isomorphism between \(R \) and the image of \(R \) in \(S \). The image is a subring of \(S \).

13.12 Proposition
If \(R_1 \) can be embedded in \(R_2 \), and that \(R_2 \) can be embedded in \(R_3 \), then \(R_1 \) can be embedded in \(R_3 \).

13.13 Question
If \(R_1 \) can be embedded in \(R_2 \) and \(R_2 \) can be embedded in \(R_1 \), does it imply that \(R_1 \) and \(R_2 \) are isomorphic?

13.14 Proposition
1. If \(F \) is a field, and \(S \subset F \) is a subring, then \(S \) is commutative. Further, if \(S \) has unity, then \(S \) is an integral domain.
2. If \(R \) can be embedded in a field \(F \), and \(R \) has unity, then \(R \) is an integral domain.
3. A ring \(R \) is an integral domain iff it can be embedded in a field and \(R \) has a unity matching the unity of \(F \).

13.15 Definition Ring Characteristics
Let \(R \) be a ring. The least positive integer \(n \) such that
\[a + \cdots + a \text{ (n-fold)} = 0 \]
for all \(a \in R \) is called the characteristic of \(R \). If no positive integer \(n \) gives such a line, we say that the characteristic of \(R \) is 0.

13.16 Proposition
If \(R \) has a unity, then its characteristic is equal to the first (least) positive \(n \) so that \(1 + \cdots + 1 \text{ (n-fold)} = 0 \). If there is no such \(n \), the characteristic will be 0.

13.17 Proposition
For an integral domain, the characteristic is either 0 or a prime.
14 Ideals and Factor Rings

14.1 Definition Ideals
Let R be a ring. An ideal I is a subring which is closed under left and right multiplications by elements of R, i.e. $a \in I \Rightarrow ra \in I$ and $ar \in I$

14.2 Theorem
Consider $\mathbb{R}[x]$. Let $I = \{p(x) \in \mathbb{R}[x] \mid p(\sqrt{2}) = 0\}$. Then it is an ideal.

14.3 Theorem
Let R be a ring and let $a \subset R$ be a subset. Then there exists a smallest ideal of R which contains A.

14.4 Definition Generated Ideals
We call $\cap \mathcal{F}$ the ideal generated by the subset A.

14.5 Definition Quotient Rings
Let R be a ring and I be an ideal of R. Let R/I denote the partition of the set R by the cosets of I, i.e. by $\{r + I \mid r \in R\}$ (needs to be justified). The set is called the quotient set.

On the quotient set, we define $(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$. R/I under the above operation is a ring. It is called the quotient ring.

14.6 Definition Ring Homomorphisms
Let R and S be rings, a map $f : R \rightarrow S$ is a ring homomorphism if it satisfies:

\[
f(r_1 + r_2) = f(r_1) + f(r_2) \\
f(r_1 r_2) = f(r_1) f(r_2)
\]

for all $r_1, r_2 \in R$. Between any two rings R and S, homomorphisms always exist, eg. $f \equiv 0$ (the trivial homomorphism).

14.7 Theorem
Let $f : R \rightarrow S$ be a ring homomorphism. Then

1. If R_1 is a subring of R, then $f(R_1) = \{f(r) \mid r \in R_1\}$ is a subring.
2. If I_1 is an ideal of R, then the image $f(I_1)$ is not necessarily an ideal of S.
3. Let S_1 be a subring of S. Then the pre-image $f^{-1}(S_1) = \{r \in R \mid f(r) \in S_1\}$ is a subring of R.
4. If J_1 is an ideal of the co-domain S, then $f^{-1}(J_1) = \{r \in R \mid f(r) \in J_1\}$ is an ideal of R.

14.8 Proposition
If $f : R \rightarrow S$ is a surjective (everything in S is used and tight) ring homomorphism, then the image of an ideal in R is an ideal in S.
14.9 Definition
Let R be a commutative ring, and I is an ideal of R.

1. I is **proper** if $I \neq R$ (some books also rule out $\{0\}$)
2. I is **prime** if it is proper and has the property $a, b \in R, ab \in I \Rightarrow a \in I$ or $b \in I$
3. I is **maximal** if there are no ideals J or R which is truly in between I and R, i.e. the only ideal I satisfying $I \subset J \subset R$ are $J = I$ or R.

14.10 Theorem
Let R be a commutative ring with unity 1. Let I be a proper ideal of R. Then

i. I is prime iff R/I is an integral domain.
ii. I is maximal iff R/I is a field.

14.11 Corollary
Maximal ideals are prime.

14.12 Theorem
If $\phi : R \to S$ is a ring homomorphism, if R has a unity and if ϕ is surjective, then $\phi(1)$ is the unity of S, i.e. $\phi(1) = 1$.

14.13 Theorem
A ring homomorphism $\phi : R \to S$ is injective if and only if Ker $\phi = \{0\}$.

14.14 Corollary
If F is a field and $\phi : F \to S$ is a ring homomorphism, then ϕ is either the zero map or it is an embedding of F into S.

14.15 Theorem The Fundamental Theorem of Ring Homomorphisms or The First Isomorphism Theorem
Let $\phi : R \to S$ be a ring homomorphism. Then $R/Ker(\phi) \simeq \phi(R)$.

14.16 Definition
Let F_1 and F_2 be two fields. We say that F_1 is an extension of F_2 if $F_2 \subset F_1$ as a subfield, or more generally, there exists and embedding $\phi : F_2 \to F_1$. For example, \mathbb{C} is a field extension of \mathbb{R}.

14.17 Proposition
If F_1 is an extension of F_2, and F_2 is a extension of F_3, then F_1 is an extension of F_3 (transitive).

14.18 Proposition
Let F be a field. Suppose that char(F) = 0. Then F is field extension of the field of rationales \mathbb{Q}.

14.19 Proposition
Let F be a field, and let the char(F) = p, a finite strictly positive integer. Then p must be a prime. Moreover, the subfield generated by 1 in F is isomorphic to \mathbb{Z}_p. Hence F is an extension of \mathbb{Z}_p.
14.20 Theorem
Let E be a field extension of F. Then E is a vector space over F.

14.21 Theorem (from linear algebra)
Every vector space over a field F has a basis.

14.22 Corollary
Let E be a finite field. Let $\text{char}(E) = p$, where p is prime. So, E is a field extension of \mathbb{Z}_p. Let B be a basis for E over \mathbb{Z}_p. B must then be finite. If $|B| = n$, then $E \cong \mathbb{Z}^n$ (as vector spaces over \mathbb{Z}_p).

14.23 Corollary
No field can be of size 10, as 10 is not prime.

14.24 Claim
For every prime p, and positive integer n, there exists a field who size is p^n. Moreover, any 2 such fields having size p^n are isomorphic.

* * * * * * *