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1 Theoretical Introduction

1.1 Background

The purpose of this project is to serve as an introduction to the Interior Point Method for solving a
very large scale integration (VLSI) circuit layout problem; that is, the global routing problem. The
global routing problem is one that commonly arises in computer chip circuitry. Modern computer
chips often have hundreds and thousands, if not millions, of modules that need to be laid out and
connected using pins and wires. This network of wires is crucial for a timely transfer of information
from one module to another.

In designing optimal chips for best performance, we ask ourselves some relevant questions:

1. Given the inherent limitations of the chip, namely space and bandwidth restrictions, is it
possible to connect all my modules in an efficient manner?

2. If yes, what layout will result in the shortest length of wire used?

3. If no, what percentage of modules can I wire successfully?

Wire length is an important consideration as the wire resistance, and in turn, the power dissipated
via the Joule effect is proportional to the total length of wire used. This can lead to tremendous
cooling problems resulting in “hot-spots” therefore causing the chip to cease normal functionality.
The efficiency of the chip is also decreased substantially as a large proportion of power input is
discarded as waste heat.

The Interior Point Method is used to determine the best possible wire combination keeping in mind
bandwidth and wire length considerations. If a thorough solution is unobtainable, the interior point
provides us with information needed to assess what percentage of wiring is indeed feasible.

1.2 LP Modeling and Methodology

Consider the 2 × 3 grid problem given in Figure 1. Suppose that we want to connect the three
modules A, B and C by a wire using horizontal and vertical segments.

Figure 1: A 2 × 3 example grid

In this case, we want a connection from module A to module B, module B to module C and
module C to module A. We call each of these connections a net. The obvious solution is to connect
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all modules directly with one path. Of course, this would not be the case if certain segments
had capacities less than 2. Consider the case where all segments have a capacity of one. The
problem becomes less direct now. Segment capacities are reached and pathway congestion occurs
preventing us from using the most direct route. Thus, an alternate pathway must be found by
re-routing through one or more connectors.

It is evident that in more complicated problems involving hundreds and thousands of modules, the
most effective solution to the problem cannot be ascertained using human logic just shown. Thus,
a more quantitative analysis must be applied.

First, all possible pathways to connect Module X to Module Y must be presented. Each module
pathway may have several possibilities or trees, denoted by yi. For each possible pathway, specific
segments are used as shown below.

Net Connection y1 y2 y3 y4

1 A to B (1,2,5) (3,6,7) (1,4,7) –
2 B to C (7,6) (7,4,1,3) (5,2,1,3) (5,2,4,6)
3 C to A (3) (6,4,1) (6,7,5,2,1) –

In this notation, p11 refers to the first connection (y1) in net 1, p32 refers to the second connection
(y2) in the third net and so on. In other words, given pij , i is the net number and j is the tree
choice (yj). pij = 1 means that the corresponding path is picked, 0 otherwise.

The first consideration is that for each given net, we need to choose one and only one tree. The
constraint is expressed as

4∑
j=1

pij ≤ 1, i ∈ {1, 2, 3}

or,

p11 + p12 + p13 ≤ 1
p21 + p22 + p23 + p24 ≤ 1 (1)

p31 + p32 + p33 ≤ 1

The second consideration deals with the fact that pathway values cannot be negative. The con-
straints can be expressed as pij ∈ {0, 1}, but for the purpose of our example (to allow for iterative
processes to converge to the solution), we let

pij ≥ 0, i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4} (2)

The third consideration is that when two or more trees are picked, the number of wires running
through any given segment must not exceed its capacity denoted by ci.

Paths through segment i ≤ ci, or
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p11 + p13 + p22 + p23 + p32 + p33 ≤ c1

p11 + p23 + p24 + p33 ≤ c2

p12 + p22 + p23 + p13 ≤ c3

p13 + p22 + p24 + p32 ≤ c4 (3)
p11 + p23 + p24 + p33 ≤ c5

p12 + p21 + p24 + p32 + p33 ≤ c6

p12 + p13 + p21 + p22 + p33 ≤ c7

For this example ci = 1 for all i = 1, 2, . . . , 7.

The fourth and last consideration is the minimization of wirelength. This is done by giving more
weightage to preferred paths. Typically longer paths are inefficient and increase the total resistance
of the circuit. Therefore, shorter paths are generally favored. Let

wiremax = maximum wirelength for all paths

An appropriate measure of wirelength is

bij = (wiremax + 1) - wirelength of tree pij

where bij is the weighting factor. Shorter wirelengths have larger weighing factors to give them
more preference and vice versa. For example, we can calculate b11 by realizing that wiremax = 5
and so b11 = (5 + 1)− (3) = 3.

Maximizing the following function results in picking up trees with the shortest wirelengths:

3p11 + 3p12 + 3p13 + 4p21 + 2p32 + 2p23 + 2p24 + 5p31 + 3p32 + p33 (4)

The weighting factor is not based on wirelength only; many other factors may be included too. In
complicated scenarios, multi-metal layered chips may have favorable metal levels through which a
wire is best routed through. The chip designer himself may have special considerations that may
have to be incorporated in choosing a more preferred tree. For the sake of this illustration, we will
use wirelengths only to determine tree preference.

Using (1), (2), (3) and (4), we have the following linear integer programming (LP) representa-
tion of the global routing problem:

MAX 3p11 + 3p12 + 3p13 + 4p21 + 2p32 + 2p23 + 2p24 + 5p31 + 3p32 + p33

p11 + p12 + p13 ≤ 1
p21 + p22 + p23 + p24 ≤ 1

p31 + p32 + p33 ≤ 1
p11 + p13 + p22 + p23 + p32 + p33 ≤ c1

p11 + p23 + p24 + p33 ≤ c2 (5)
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p12 + p22 + p23 + p13 ≤ c3

p13 + p22 + p24 + p32 ≤ c4

p11 + p23 + p24 + p33 ≤ c5

p12 + p21 + p24 + p32 + p33 ≤ c6

p12 + p13 + p21 + p22 + p33 ≤ c7

pij ≥ 0, for i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}

In addition, ci = 1, for i = 1, 2, . . . , 7 for the sake of example.

(5) is a system of linear inequalities and therefore cannot be solved by conventional reduction or
elimination methods. We need a more sophisticated method to find an optimal solution that fits
within the constraints specified.

2 The Interior Point Algorithm

Starting from Karmarkar’s epoch-making paper [1] in 1984, research on interior-point methods
(IPMs) has dominated the field of linear optimization for more than fifteen years, and over three
thousand papers have been published relating to IPMs. The implementation of the Interior Point
Algorithm takes a different approach than from the Simplex Method [2] in that it starts with a
point known as the initial guess inside the n-dimensional linearly constrained space and constructs
ellipsoids inside this feasible region. Following this, a projection is calculated in the direction of the
optimal solution and the intersection of the projection with the ellipsoid’s boundary becomes the
updated guess point. The process is iterated through repeatedly until a close enough solution is
obtained. This process will never actually converge to an answer because the ellipsoid constructed
will never exactly touch a corner where the most optimal solution is to be found. The margin of
error results due to this distance between the ellipsoid’s boundary and the optimal solution.

The projection itself is based on a number of factors such as projection direction, correction angle,
and step-length parameter γ, where 0 < γ < 1. This parameter enables us to control how far a
jump should be taken given a projected direction. Although it might seem that γ = 1 is the most
optimal value, we need to keep in mind that the direction calculated initially may not point directly
toward the optimal solution. A large value for γ can thus prematurely lead the interior point to a
boundary causing it to “zig-zig”, thereby increasing the number of iterations required. Choosing
an optimal value for γ for a given LP problem will be explored in further detail in the following
sections.

2.1 Pseudo Code

Step 1

The interior point method requires five input variables: A coefficient matrix and a capacity vector
A ∈ <m×n and b ∈ <m that correspond to the left and right hand side of (5) respectively; a
vector c that corresponds to the coefficients of the objective function, in our case it is the function
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constituting weighted trees; a vector x0 of initial points that lies within the boundaries of the
n-dimensional space, i.e. Ax0 < b; and a step-length parameter γ.

Step 2

The interior point starts off by finding how far the initial guess is from each constraint.

vk (slack) = b−Axk =
[
vk
1 , vk

2 , · · · , vk
m

]T
Since from step 1, b > Ax0, vk will always be positive. For each iteration the updated point
x0 gets closer to the optimal value x, and the slack becomes increasingly smaller. This correlates
with the geometric explanation that as the ellipsoid drawn gets closer to the optimal corner in the
n-dimensional space, the difference between the corner and the circle gets smaller.

Step 3

Once the ellipsoid has been defined, the direction of the projection is calculated. A diagonal matrix
D ∈ <m×m is created first by inverting each slack and placing them across the main diagonal.

Dk = diag
[

1
vk

1

,
1
vk

2

, · · · , 1
vk

m

]
Step 4

We use Dk to find the projection of the current guess onto the boundary of the ellipsoid. In doing
so, we solve a system containing a quadruple product

(
ATDkDkA

)
dx = c (6)

where dx is the directional matrix and c is the coefficient vector of the objective function. This
is another linear system that needs solving, which will be dealt with later. The observation that
the quadruple product ATDkDkA is always symmetric and positive definite plays a key role
in one of the techniques used to solve (6).

Step 5

We then proceed to scale the projected direction vector dx as defined by the coefficient matrix A.

dv = −Adx = [(dv)1, (dv)2, · · · , (dv)m]T

Step 6

This step takes the ratio of the slack and the corresponding scaled vector dv, after which the
maximum valid projected length is chosen. The step length α is given by

α = γ ×MAX
{

vk
i

(dv)i
, for (dv)i < 0

}
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where i = 1, 2, . . . ,m.

We discard positive values in (dv)i as they point away from the optimal solution. As a result, the
maximum of dv will yield the value closest to zero as our step length to be further scaled by γ.

New guesses or x values are calculated by

xk+1 = xk − αdx

where αdx is the projection (magnitude and direction) or the change in x, a factor that leads to a
better approximated interior point xk+1.

Step 7

The interior point method is an iterative process. For each iterative cycle, we get closer to the
optimal solution giving rise to better x values. As the number of iterations k proceeds to infinity,
xk+1 will equal x. For simple problems, we may be satisfied with a reasonable level of accuracy
identified by ε. The stopping criterion (specified relative to the previous iteration) is given by

|cTxk+1 − cTxk|
|cTxk|+ ε

≤ ε

Typically, ε is of the order 10−6; however, we can choose ε to be as small as we want depending on
the level of accuracy desired.

3 A MATLAB Implementation

The complete MATLAB code for the Interior Point Algorithm can be found in Appendix A of this
document.

In Step 4 of the interior point algorithm, we are required to calculate the direction of the projection
vector by solving (6). Quite expectedly, there are several methods to approach this. We detail
three methods used in our implementation of the interior method.

3.1 Cholesky Factorization

In MATLAB1, an equation of the form Ax = b can be conveniently solved using mldivide or
the backslash operator. This examines the input matrix A, performs a series of tests on it, and
determines the best possible method to obtain the solution vector x. As mentioned previously,
the quadruple product ATDkDkA is symmetric and positive definite and thus makes it an ideal
candidate to be used in a Cholesky factorization method. In our implementation, we programmed
the factorization explicitly. In MATLAB, a pre-programmed function chol exists to obtain the
factors of the quadruple product. We solve the system Ax = b quite straightforwardly:

1Matrix Laboratory (Mathworks, Inc.)
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10 R = chol(A);
11 x = R \ (R’ \ b);

3.2 Gauss-Seidel Iterative Technique

The Gauss-Seidel method is an iterative technique which accepts an initial guess and iterates to
obtain a better guess, much like the interior point method itself. A system of the form Ax = b can
be written as (D − L −U)x = b, where D, −L and −U are respectively, elements on the main
diagonal, lower triangular and upper triangular parts of the matrix A. Re-arranging, we obtain

xi+1 = (D− L)−1Uxi + (D− L)−1b (7)

The Gauss-Seidel method is computationally efficient and requires a minimum number of iterations
because it uses updated values from x1 to xi−1 to compute xi. This process is incorporated into
the matrix form (7) and does not have to be programmed separately.

In our implementation, the Gauss-Seidel routine always uses a vector of zeroes as an initial guess.
An indefinite while loop is then used to iterate repeatedly until the value of x is within a desired
degree of accuracy. This is indicated by the stopping criterion

‖y‖2 =

(
n∑

i=1

y2
i

)1/2

≤ ε = 10−5,where y = Ax− b

upon which the MATLAB break statement is used to terminate the loop.

3.2.1 A von Neumann Polynomial Preconditioner

In attempting to solve a system of the form Ax = (ATD2
kA)dx = c, the input matrix A gets more

complicated as the interior point method converges to the solution. In such cases, det(A) ≈ 0
and the gauss-seidel routine takes a large number of iterations to converge. Sometimes, the
number of iterations exceeds the maximum specified by us, thereby returning an error. The famous
Hungarian-born mathematician John von Neumann presented a very fast matrix preconditioner
for finding the approximate inverse matrix A−1 of the matrix A. He did so by truncating the
McLaurin series generalization for matrices and obtaining the following formula:

A−1 ≈ P = D−1

(
k∑

i=0

(
CD−1

)i)

where P is the preconditioner matrix, and D and −C are the respective diagonal and off-diagonal
elements of A.

We therefore solve the system PAx = Pc using the Gauss-Seidel technique which reduces the
number of iterations significantly, especially for a close-to-singular matrix A. The matrix PA is
close to an identity matrix thereby simplifying the problem.
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In our MATLAB implementation, A−1 was computed via a function.

1 function [P] = precondition(B, k)
2
3 D = diag(diag(B));
4 C = D - B;
5 r = C * inv(D);
6 inverse = 0;
7
8 for j = 0:k
9 inverse = inverse + r^j;

10 end
11
12 P = inv(D) * inverse;
13
14 end

where k is the number of terms to be used in the McLaurin series expansion for matrices for the
following function

f(x) =
1

1− x

given by

f(x) =
∞∑
i=0

xi = 1 + x2 + x3 + x4 + · · ·

when

|x| < 1

In our gauss-seidel routine, we had triggers set-up to initiate preconditioning. However, once
preconditioning was triggered, we ensured that this stayed the same throughout.

3.3 Preconditioned Conjugate Gradient Method

The actual theory beneath the preconditioned conjugate gradient (PCG) method is outside the
scope of our understanding at this stage, but the general idea has been understood by a casual
reading of parts of [3]. Our interpretation is summarized in Appendix C.

Unfortunately, the PCG method is far beyond our understanding to actually code, so we use the
pre-programmed MATLAB function to solve the equation proj · dx = c:

48 % Way 5 - Preconditioned Conjugate Gradient Method
49 [dx, flag] = pcg(proj, c, eps, 30);
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where eps is the error tolerance desired, 30 is the maximum number of iterations and flag is an
argument returned by the in-built function pcg.

4 Results and Evaluation

We tested our code against two medium-sized routing problems. We will look at each problem
individually.

4.1 Routing Problem 1

In problem #1, we deal with a 12 net (wire) consisting of 25 modules on a 6 × 6 grid. The input
matrix A is reasonably large of dimensions 31× 19. The matrix is not particularly sparse, but the
interior point method was successful in converging to the solution in as less as ten iterations.

The linear integer programming representation of this problem and it’s corresponding output is
given in Appendix B. After we obtained this solution, we asked ourselves “How sensible is this
answer?” We reasoned that our results made sense since the maximizing function picks the paths
with coefficients 5, observing that the constraints for any given path do not overlap. In other words,
there are no two constraints that involve the same path and the problem is separately maximized
by the objective function. It can be shown that this is indeed the case by verifying the solution
obtained. The numerical value of the function being maximized appears under the dashed line.

4.2 Routing Problem 2

In problem #2, we solved a 10 net (wire) problem. The input matrix A was fairly large of dimensions
50×20. The interior point algorithm successfully converged to the right solution in as less as eleven
iterations.

The linear integer programming representation of this problem and it’s corresponding output is
given in Appendix B. The problem is structured is such a way that maximizing the objective
function will simply pick the wires with greatest weights. In other words, the problem is once again
separately maximized by the objective function. The solution obtained may be verified against this
observation. The numerical value of the objective function appears under the dashed line.

4.3 Inadequate Constraints

During our initial stages of testing of Routing Problem 1, we forgot to input the last few constraints,
namely yj ≥ 0 for j = 1, 2, . . . , 19 into our input matrix A. Doing so allowed the yj variables to
assume negative values. When attempting to solve such inconsistent systems, the gauss seidel
routine returns a warning:

Warning: Matrix is singular, close to singular or badly scaled to
working precision.
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On a similar note, the cholesky factorization method would return an error:

??? Error using ==> chol
Matrix must be positive definite.

Only MATLAB’s built-in PCG function would return a result. However, this result comprised of
negative values for yj , which although is the solution to the system (the objective function was
indeed maximized), is not physically meaningful.

The problem was corrected for by adding the extra constraints into the input matrix.

4.4 Parameter Analysis

In Section 2, we described the trait in which the interior point “zig-zags” toward the solution upon
getting too close to a boundary. This leads to an increase in the number of iterations. One method
to solve this would be to make the parameter γ—a parameter that controls the step length—a
function of k, the iteration counter. This would lead to taking large step lengths in the beginning
but smaller step lengths as we approach the solution.

We found that the number of outer interior point iterations kipm and the maximum number of
inner gauss-seidel iterations kgs changed as a function of γ. The results for Routing Project 1
are tabulated in Table 1. A starred number indicates that the number of iterations had crossed the
limit set by the gauss-seidel routine.

γ kipm kgs (max)
0.9999 5 38000*
0.999 6 38000*
0.99 7 31177
0.90 10 314
0.85 12 141
0.80 12 81
0.75 13 53
0.70 13 38
0.60 16 29
0.50 20 29
0.40 26 29

Table 1: Parameter analysis for Routing Project 1

Guessing kmax before determining γ, it turns out, is not as straightforward, so we resorted to
predicting it as the interior point algorithm was running and we had some values from the first
few iterations. We decided to come up with a feedback control system that would predict
kmax using these values, change γ accordingly and lower the number of iterations. This process
would repeat itself every five or so iterations. The key here is that all of this would happen as
the algorithm was running. However, the implementation of this technique got a bit hairy towards
the end leading us to abandon it. Furthermore, this method is not substantially useful for simple

10



problems: the reduction in iterations is only about five or less. For more complicated problems, a
thorough implementation of this technique seems feasible.

5 Conclusion

This project was a grand success. All four examples that our code was tested against worked on
the first attempt without major problems. Two minor problems encountered were a) a division by
zero error in Step 6 of the interior-point algorithm and b) negative results error because of omitting
the extra required constraints yj ≥ 0. Both of these errors were fixed without substantial effort. In
general, all requirements stated in the handed booklet were met without significant problems.

An interesting observation made during the course of our project was that the Cholesky factor-
ization method worked very well for relatively large and non-complex matrices; however, as the
interior-point method converged toward the optimal solution, the quadruple product in (6) in-
creased dramatically in both size and complexity, and iterative techniques like Gauss-Seidel proved
to be more computationally speedier. These observations led us to theorize a solution where the
code automatically switched between using Cholesky and Gauss-Seidel during execution to solve
the quadruple product system. This might lead to solving much larger routing problems in a speedy
fashion.

The routing problems we solved were idealized problems where the solution could be predicted by
simply studying the constraints. In reality however, this is not the case. We spent additional time
investigating methods that might help speed up solving larger and more complex matrices that
are characteristic of real-life circuit layout problems. Routing Problem 2 was self-contained and
extensible; we therefore tried our code against a 750 × 300 matrix that resembled Routing Problem
2. Much to our surprise, the code worked without a single flaw and the anticipated solutions
obtained. We were limited to trying much larger matrices by the computational power of our
household laptops. We even went as far as to try our code against extremely complicated matrices
such as the famed Hilbert matrix, generated using MATLAB’s hilb and gallery functions.

Overall, every single issue that arose contributed to the refinement of the project. We learned
when and where code optimization was possible and necessary, and how this can be achieved
only through a continuous process of refinement and of course, a thorough background in the
fundamentals of linear algebra. The procedures outlined mimic real-life scenarios where industry
experts are constantly trying to optimize existing solutions, and where possible, find new ones. The
project was a fulfilling experience in that it gave us a strong taste of how linear algebra can be
exploited as a powerful tool in solving routine VLSI problems.
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Appendices

A The MATLAB Code

1 % Interior Point Method Algorithm for solving the GLOBAL ROUTING problem
2 % Rajesh Swaminathan
3 % NE 112 - #20194189
4 %
5 % Created : 10/24/2005
6 % Revised : 10/31/2005
7 % Re-revised : 11/21/2005 (Routing Problem #1)
8 % Finalized : 11/28/2005 (Routing Problem #2)
9

10 % Interior Point Method on the general (LP) Problem
11 % Max c’x
12 % such that Ax <= b
13
14 pfunction_new = c’ * x;
15 k = 0;
16
17 while 1
18
19 % STEP 1
20 % present function value
21 pfunction = pfunction_new;
22
23 % STEP 2
24 % Defining the distance of the current interior point from each of the
25 % LENGTH(A) constraints
26 vk = b - A*x;
27
28 % STEP 3
29 % Calculate the diagonal matrix
30 Dk = diag(1./vk);
31
32 % STEP 4
33 % Finding the projection direction towards the optimal solution
34 proj = A’ * Dk * Dk * A;
35
36 % Way 1 - Inverse (inefficient)
37 % dx = inv(proj) * c;
38
39 % Way 2 - mldivive (uses cholesky automatically)
40 % dx = proj \ c;
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41
42 % Way 3 - Cholesky
43 % dx = cholesky(proj, c);
44
45 % Way 4 - Gauss-Seidel
46 dx = gauss_seidel(proj, c);
47
48 % Way 5 - Preconditioned Conjugate Gradient Method
49 % [dx, flag] = pcg(proj, c, eps, 30);
50
51 % STEP 5
52 % Scale the projected direction dx
53 dv = -A * dx;
54
55 % STEP 6
56 % Calculating the appropriate STEP LENGTH so that we stay in the
57 % feasible region
58
59 % Notes:
60 % 1) vk is strictly postive
61 % 2) all positive and zero values are discarded
62 % 3) disvion by zero avoided
63
64 for i=1:length(dv)
65 if dv(i) < 0
66 step(i) = vk(i) / dv(i);
67 else
68 step(i) = -1E30;
69 end
70 end
71
72 % or,
73 %
74 % dv(dv >= 0) = -1E-30
75 % step = vk ./ dv;
76
77 alpha = gamma * max(step);
78
79 % Calculate the new interior point
80 x = x - alpha * dx;
81
82 % STEP 7
83 % Check the relative stopping criterion
84 pfunction_new = c’ * x;
85
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86 if abs((pfunction_new - pfunction) / (pfunction + eps)) < eps
87 disp([num2str(k) ’ iterations’]);
88 disp(x);
89 disp(’ ------’);
90 disp(pfunction_new);
91 break
92 end
93
94 k = k + 1;
95
96 end
97 return;
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B Global Routing Problems

Routing Problem 1

MAX 5y1+y2+5y3+y4+5y5+y6+5y7+y8+5y9+y10+5y11+5y12+y13+5y14+5y15+y16+5y17+5y18+5y19

y1 + y2 ≤ 1
y3 + y4 ≤ 1
y5 + y6 ≤ 1
y7 + y8 ≤ 1

y9 + y10 ≤ 1
y11 ≤ 1

y12 + y13 ≤ 1
y14 ≤ 1

y15 + y16 ≤ 1
y17 ≤ 1
y18 ≤ 1
y19 ≤ 1

yj ≥ 0, for j = 1, 2, . . . , 19

The result is summarized as follows:

10 iterations
1.0000
0.0000
1.0000
0.0000
1.0000
0.0000
1.0000
0.0000
1.0000
0.0000
1.0000
1.0000
0.0000
1.0000
1.0000
0.0000
1.0000
1.0000
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1.0000

------
60.0000

Elapsed time: 0.601 s

Thus the optimal solution is

y1 = y3 = y5 = y7 = y9 = y11 = y12 = y14 = y15 = y17 = y18 = y19 = 1; and
y2 = y4 = y6 = y8 = y10 = y13 = y16 = 0.

Routing Problem 2

MAX y1 + 2y2 + 3y3 + 4y4 + 5y5 + 5y6 + 4y7 + 3y8 + 2y9 + y10 +
5y11 + 4y12 + 4y13 + 2y14 + 1y15 + 1y16 + 2y17 + 2y18 + 4y19 + 5y20

y1 + y11 ≤ 1
y2 + y12 ≤ 1
y3 + y13 ≤ 1
y4 + y14 ≤ 1
y5 + y15 ≤ 1
y6 + y16 ≤ 1
y7 + y17 ≤ 1
y8 + y18 ≤ 1
y9 + y19 ≤ 1

y10 + y20 ≤ 1

0 ≤ yj ≤ 1, for j = 1, 2, . . . , 20

The result is summarized as follows:

11 iterations
0.0000
0.0000
0.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.0000
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0.0000
1.0000
1.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
1.0000

------
43.0000

Elapsed time: 0.581 s

Thus the optimal solution is

y4 = y5 = y6 = y7 = y8 = y11 = y12 = y13 = y19 = y20 = 1; and
y1 = y2 = y3 = y9 = y10 = y14 = y15 = y16 = y17 = y18 = 0.
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C Preconditioned Conjugate Gradient Method

The Preconditioned Conjugate Gradient Method (PCG) works by taking the system Ax = b and
placing it in quadratic form. For a positive definite matrix A, the quadratic plane turns out to be
parabolic. At the bottom of this plane, there exists a point where the derivative of the function
equals zero, which is where our solution is. For a symmetric matrix A, the derivative of any point
will be equal to Ax− b. This can be derived using the quadratic equation and partial derivatives.

The steepest decent method takes an initial guess point on the plane and “slides down” into the
paraboloid’s bottom until it is close enough to the answer. This is achieved by creating a function
that can be iterated through to obtain a solution:

P′(x) = Ax− b

∴ −P′(x) = b−Ax

where −P′(x) will converge to zero as the number of iterations proceeds to infinity.

Since −P′(x) is equal to the distance between the evaluated guess and the constraints, we call it
the residual. This relates to Step 2 of the interior point method.

Ri = b−Axi

We also find that we can use the second part of Step 6 of the interior point method, which says:

xk+1 = xk − αdx

We can think of R0 as the directional vector, ergo

xk+1 = xk − αR0

Also, we find that −P′(x) → 0 as α → 0. Therefore taking the derivative of P(xk+1) with respect
to α yields P′(xk+1)TR0 which equals zero at the end of convergence.

Since −P′(x0) = b−Ax = R0, P′(x1)TR0 = −RT
1 R0 = 0. Algebraic manipulation yields

α = RT
0 R0/RT

0 AR0
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