
Critical Reading of “Optimization Methods
for Logical Inference” [1]

Undergraduate Research Internship

Department of Management Sciences

Fall 2007

Supervisor: Dr. Miguel Anjos

UNIVERSITY OF WATERLOO

Rajesh Kumar Swaminathan

February 4, 2008

Table of Contents

1 Introduction to SAT 1

2 Special Cases in Propositional Logic 1

2.1 Basic Concepts . 1

2.1.1 Unit Resolution . 2

2.2 Integer Linear Programming Models . 3

2.2.1 Optimization and Inference . 4

2.2.2 The Linear Programming Relaxation . 6

2.3 Horn Polytopes . 7

2.3.1 Horn Resolution . 8

2.3.2 The Integer Least Element of a Horn Polytope 9

2.3.3 Dual Integrality of Horn Polytopes . 11

3 Summary of Findings 12

4 List of Theorems 12

Bibliography 13

i

1 Introduction to SAT

The boolean satisfiability (SAT) problem consists of answering the following questions:
1. Is a given proposition (or formula) S satisfiable? That is, is it possible to find truth assign-

ments for the variables (or atomic propositions) in S such that S evaluates to true? If the
answer to this question is no, we call S unsatisfiable.

2. Is a given proposition S a tautology? That is, is every possible combination of 2n truth
assignments a model for S? (A model is any satisfying truth assignment.) This is the same as
asking if there does not exist a truth assignment for which S evaluates to false. The simplest
tautology would be (x1 ∨ x̄1).

3. Does a proposition S1 imply (→) another proposition S2 defined on the same set of variables?
That is, is every model of S1 a model of S2 without explicitly solving for all the models of S1

(if this is even possible)?
One way to answer all three questions is to enumerate all 2n possible truth assignments, where

n is the number of atomic propositions, and to run them through the formula. This number
of possible combinations unfortunately grows far too quickly (exponentially) with the number of
atomic propositions and becomes unmanageable for even as few as 30 atomic propositions (1 billion
possible truth combinations). The problems we are likely targeting have from 1000 to 10,000 atomic
propositions in them.

The implication question posed in q. 3 can be rewritten as a satisfiability problem similar to
the one posed in q. 1 since asking if S1 → S2 is the same as asking if (S̄1 ∨ S2) is a tautology.
Conversely, every proposition S in a satisfiability problem similar to the one posed in q. 1 can
be written as an implication problem like the one posed in q. 3 by simply solving (T → S) since
this reduces to solving (F ∨ S) which is the same as (S). The disjunction of a proposition with
another proposition that is always unsatisfiable is pointless and can be simplified by dropping the
unsatisfiable proposition. Thus questions 1 and 3 are equivalent and are therefore equally “hard”.

Question 2 is a little bit “harder” in an algorithmic sense since one would have to explore a
significantly larger feasible set that contains every single possible model which can be as large as
2n, n being the number of atomic propositions, if the proposition is indeed a tautology.

There is a simple equivalence between all three problems. The following statements are equiv-
alent

1. S1 implies S2.
2. (S̄1 ∨ S2) is a tautology.
3. (S1 ∧ S̄2) is unsatisfiable.
since every model of S1 is also a model of S2. We showed above that statements 1 and 3 are the

same. But questions 2 and 3 are simply negations of each other and are therefore the same. Thus
all three statements above are equivalent and a simple equivalence between all three problems has
been demonstrated.

2 Special Cases in Propositional Logic

2.1 Basic Concepts

Conjunction in logic is a compound proposition that is true if and only if all of its component
propositions are true. Conjunctions are represented by the symbol “∧” and correspond to a logical
AND. Disjunction in logic is a compound proposition that is true if and only if at least one of its

1

component propositions is true. Disjunctions are represented by the symbol “∨” and correspond
to a logical OR. Negations are represented by a “bar” on top of the formula or literal such as S̄ or
x̄ and correspond to a logical NOT.

We therefore have the following simple rules:
1. (S1 ∧ S2) is T if and only if both S1 and S2 are T.
2. (S1 ∨ S2) is F if and only if both S1 and S2 are F.
3. S is T if and only if S̄ is F.
Basic properties and laws of propositions may be applied without affecting the proposition’s

models (¬S is alternate notation for S̄):
1. Involutory property of negation: ¬¬S = S
2. De Morgan’s Laws:

¬(S1 ∨ S2) ⇔ (S̄1 ∧ S̄2)

¬(S1 ∧ S2) ⇔ (S̄1 ∨ S̄2)

3. Distributive Law: S1 ∨ (S2 ∧ S3) ⇔ (S1 ∨ S2) ∧ (S1 ∨ S3)
A satisfiability problem posed as a propositional formula is said to be in conjunctive normal

form (CNF) if it is a conjunction of one or more clauses, each of which is a disjunction of one or
more (possibly negated) literals.

Theorem Any formula in propositional logic is equivalent to a CNF formula whose length is
linearly related to the length of the original formula.

That there exist rewriting techniques leading to CNF representations that are polynomially
bounded in length was first noted by Tseitin as early as 1968.

Consider the worst-case scenario which is rewriting a formula in disjunctive normal form (DNF)
as CNF. A DNF formula is a disjunction of terms, each of which is a conjunction of literals. An
example of a DNF formula is:

(x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6) ∨ (x7 ∧ x8)

We introduce new propositions x12, x34, x56, x78 that represent each conjunction in parenthesis.
For each x2j−1,2j (j = 1, 2, 3, 4) we write the clauses (x̄2j−1,2j ∨ x2j−1) and (x̄2j−1,2j ∨ x2j)

We also need one additional clause to knit the four subformulas together.

(x12 ∨ x34 ∨ x56 ∨ x78)

These clauses put together represent the DNF formula above. It is easy to see that this technique
results in a CNF formula with three times the original number of atomic propositions, and twice
the original number of clauses plus one additional clause to knit the subformulas together. Both
the number of atomic propositions and the number of clauses are therefore linear in growth. 2

2.1.1 Unit Resolution

Consider the following example:

(x1) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄1 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x5)

It is clear that if this formula is to hold true, one would have to set x1 to 1 since it stands alone
as a unit positive clause. We therefore set x1 to 1 and remove it from the formula. In addition,
we also remove all other clauses where x1 is present as a positive literal since these clauses will be

2

automatically satisfied. Furthermore, we get rid of all occurrences of x̄1 in any of the remaining
clauses since this literal will always be false and a disjunction with something that is always false
is pointless.

We are now left with

(x2 ∨ x̄3 ∨ x4) ∧ (x̄4) ∧ (x̄2 ∨ x3 ∨ x5)

We now repeat the process with x̄4 to obtain the reduced form

(x2 ∨ x̄3) ∧ (x̄2 ∨ x3 ∨ x5)

We now stop as we cannot apply the same process once more due to a lack of unit clauses.
This procedure is referred to as unit resolution.
1. If the unit resolution procedure applied to S returns an empty formula then unit resolution

has succeeded in finding a satisfying truth assignment for S.
2. On the other hand, if the procedure returns S = {}, that is the empty clause, then S is

unsatisfiable since the only way to obtain an empty clause is to have something of the form
(xi) ∧ (x̄i) to begin with.

2.2 Integer Linear Programming Models

Integdr linear programming deals with linear programming problems where one or more variables
are restricted to taking integer values. By introducing suitable bounds on the integer variables
(which are expressed as linear inequalities), it is possible to restrict variables to only take values
in the nonnegative integers or even just values of 0 or 1. It is the latter “boolean” restriction that
captures the semantics of propositional logic since the values of 0 and 1 may be naturally associated
with False and True.

The idea here is to formulate satisfiability of CNF formulas as integer linear programming
problems with clauses represented by constraints and atomic propositions represented by 0-1 binary
variables.

In general, integer linear programming (ILP) problems may be solved by solving the linear
relaxation and then applying a branch-and-bound procedure. But since all of our variables are
not only integer but also binary, we may alternatively apply special-case algorithms such as Balas’
additive algorithm to solve the binary ILP problem.

Consider, for example, the single clause x2 ∨ x̄3 ∨ x4. This clause may be represented by the
inequality x2 + (1− x3) + x4 ≥ 1 with x2, x3 and x4 restricted to boolean values of 0 and 1. Thus
the SAT problem

(x1) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄1 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x5) (1)

may be represented by the following set of constraints, one for each clause:

x1 ≥ 1
x2 + (1− x3) + x4 ≥ 1
(1− x1) + (1− x4) ≥ 1
(1− x2) + x3 + x5 ≥ 1

x1, · · · , x5 = 0 or 1

3

Moving all constants to the right hand side, we get the following clausal form:

x1 ≥ 1
x2 − x3 + x4 ≥ 0

−x1 − x4 ≥ −1 (2)
−x2 + x3 + x5 ≥ 0

x1, · · · , x5 = 0 or 1

In general, satisfiability in propositional logic is equivalent to the solvability of the linear system
Ax ≥ b, x ∈ {0, 1}n where the inequalities Aix ≥ bi are clausal.

A few quick notes and observations:
1. A is an m × n matrix of 0s and ±1s, where m is the number of clauses and n is the total

number of atomic propositions in the formula. Aij is +1 if xj is positive in clause i, -1 if
negated, and 0 otherwise.

2. bi = (1 – # of -1s in row i of matrix A). b can therefore be calculated given a matrix A of 0s
and ±1s.

3. The geometric interpretation of a SAT problem reduces to looking for an extreme point of the
unit hypercube in <n that is contained in all the half-spaces defined by the clausal inequalities.

We may verify the involutary property of the negation operator “¬” and De Morgan’s laws
stated previously by looking at their corresponding linear integer constraint representations:

1. (¬¬x1) ⇔ 1− (1− x1) ≥ 1 ⇔ x1 ≥ 1 ⇔ (x1)
2. ¬(x1 ∨ x2) ⇔ 1− (x1 + x2) ≥ 1 ⇔ x1 + x2 ≤ 0 which is equivalent to the set of constraints

x1 ≤ 0
x2 ≤ 0

since if any one of x1 or x2 (say x1) were allowed to be strictly positive, it would take the
value of 1 (recall the additional constraint xi ∈ {0, 1}) and so x2 would need to be at most
-1 to satisfy x1 + x2 ≤ 0 which is of course not possible. We reach a contradiction and hence
conclude that both x1 and x2 need to be at most 0 if their sum is to be at most 0.

One may now proceed to verify the other half of De Morgan’s laws and the distributive property
in a similar fashion.

2.2.1 Optimization and Inference

We have already seen that the intersection of clausal half-spaces defines a convex polyhedron. If
the additional box constraints 0 ≤ xj ≤ 1 are added, we obtain a bounded polyhedron also known as
a polytope. Satisfiability now essentially implies finding a feasible integer point inside this polytope.

We may check to see if an integer linear programming problem is feasible or not by using a
2-phase method, that is, by adding an artificial variable and then trying to optimize the artificial
variable to 0. Thus the satisfiability of (1) may be tested by checking the feasibility of (2) which is
in turn done by solving the following optimization problem:

4

MIN x0

s.t. x0 + x1 ≥ 1
x0 + x2 − x3 + x4 ≥ 0
x0 − x1 − x4 ≥ −1
x0 − x2 + x3 + x5 ≥ 0

xj ∈ {0, 1}, j = 0, 1 . . . 5

The above optimization problem is always feasible with x0 = 1 and all other xj = 0 and an
optimal value of x0 = 0. Thus, the original formula is satisfiable if and only if the optimization
problem above is solved with x0 at 0. When x0 = 0, the x0’s in the constraints drop out and we
are left with a feasible solution to the original set of constraints put down in (2).

The above optimization problem is called a phase 1 construction which takes the general form

MIN x0

s.t. x0e + Ax ≥ b
xj ∈ {0, 1}, j = 0, 1 . . . n

where Ax ≥ b represents the original clausal inequalities and e is a column of ones.
We therefore now have a way of checking to see if a given proposition is satisfiable or not. How

about the inference problems in the form of implications? That is, does a formula S1 imply another
formula S2 (S1 → S2)? We have already seen that the problem (S1 → S2) is identical to asking if
(S̄1 ∨ S2) is a tautology.

To begin with, assume S1 is CNF and S2 is given by a single clause C. The optimization model
is given by:

MIN cx
s.t. Ax ≥ b

x ∈ {0, 1}n

where c is the incidence vector of clause C and Ax ≥ b are the clausal inequalities representing S1.
The incidence vector c is constructed by assigning a value of +1 to ci if the literal xi is positive in
C, -1 if negated, and 0 otherwise.

If this optimization yields a minimum value of 1 - n(C) (1 minus the number of negative literals
in C) or larger, S1 implies S2. Otherwise the implication does not hold.

Why is this the case?
Suppose that there exists a model that satisfies both S1 and S2, then we are guaranteed a

feasible solution for the set of constraints

Ax ≥ b
cx ≥ 1− n(C)

x ∈ {0, 1}n

Now we take the left-hand-side of the second constraint and move it to the objective function
and then try to minimize it. Since Ax ≥ b still remains as a constraint (note that we do not

5

associate any artificial variables with this constraint), we are ensured that we are only working
with models of S1 (since Ax ≥ b are the clausal inequalities representing S1).

The question is whether all these models of S1 are also models of S2 whose inequality is repre-
sented by cx ≥ 1−n(C). If all models of S1 are also models of S2, cx would always remain greater
than 1−n(C) (meaning that cx ≥ 1−n(C) always remains feasible when Ax ≥ b is) for if there was
even one model of S1 that was not a model of S2 then the minimization would pick this up to yield
an objective value cx that is strictly less than 1− n(C) which causes the inequality cx ≥ 1− n(C)
representing S2 to be violated.

Thus S1 implies S2 if and only if the optimal minimum value is greater than or equal to 1−n(C).
Now, what if S2 is given by more than just a clause? The idea is here is to show that (S1 ∧ S̄2)

is unsatisfiable as discussed in Section 1.
Consider the situation

(i) S1, CNF, with clausal inequalities Ax ≥ b
(ii) S̄2, CNF, with clausal inequalities Bx ≥ d

To test if S2 is logically implied by S1 we solve

MIN x0

s.t. x0e + Bx ≥ d (corresponds to S̄2)
Ax ≥ b (corresponds to S1)
x ∈ {0, 1}n

If this problem is optimized at 0, then both S1 and S̄2 are true which means there exists a
model of S1 that is not a model of S2 indicating that S1 does not imply S2. Thus S1 implies S2 if
and only if the minimum value of x0 is 1, for if x0 were allowed to be 0, the minimization would
pick it up. The fact that the minimization does not pick it up indicates that there is no model of
S1 that is not also a model of S2.

Once again, we do not associate an artificial x0 with the constraint Ax ≥ b since we assume
that S1 is satisfiable. If S1 had no models to begin with, i.e. if it were unsatisfiable, the implication
S1 → S2 always holds.

To conclude, we can always easily rewrite inference problems in propositional logic as integer
linear programming (ILP) problems. But in general, ILP problems are just as hard (if not harder
in particular instances) to solve as the satisfiability problem itself. It seems then that we have
taken a hard problem—the one of satisfiability—and made it even harder by converting it into
an ILP problem. However in practice, special mathematical structure makes many ILP problems
easy to solve and this happens to be true of many inference problems in propositional logic. We
now proceed to investigate special mathematical structure within an ILP representation of SAT by
looking at its corresponding linear programming (LP) relaxation.

2.2.2 The Linear Programming Relaxation

The linear programming relaxation consists of taking the ILP problem formulated above and re-
laxing the integer (binary) constraints xj ∈ {0, 1} to the weaker condition 0 ≤ xj ≤ 1.

The idea is to analyze the properties of this linear programming relaxation to obtain ideas on
computational strategies for solving the integer model. It turns out that the linear programming
relaxation retains sufficient structure to be a useful representation of the original inference problem.
The relaxation provides a means of understanding special structures in propositions that permit
efficient solvability of inference.

6

It is interesting to observe that the actions performed by the unit resolution procedure discussed
in Section 2.1.1 earlier are implicitly encoded into the linear inequalities of the linear programming
relaxation. For example, a unit clause (xj) is given by xj ≥ 1. However, there is an explicit upper
bound xj ≤ 1 on xj . Thus xj is fixed to have a value of exactly 1 (as fixed by unit resolution).
Similarly, a unit clause with a negated literal (x̄k) is given by the linear inequality −xk ≥ 0, but
there exists a lower bound on xk given by xk ≥ 0 which fixes the variable xk to have a value
0. Also if at any stage of unit resolution two conflicting unit clauses (xj) and (x̄j) are obtained,
the corresponding implied inequalities are xj ≥ 1 and −xj ≥ 0, which are in conflict. The linear
program is inconsistent and therefore infeasible in such a situation.

Lemma The linear programming relaxation of a unit clause free CNF formula is always feasible
with the trivial fractional solution xj = 1

2 for all j.
It is easy to convince ourselves that the lemma is indeed true. If the clause contained (two or

more) positive-only literals, the left hand side of the corresponding constraint would always add
up to 1 or more. For every additional negated literal that is added, the left hand side decreases by
a 1

2 , but the right hand side decreases by 1, a larger quantity, thereby preserving the inequality. If
the clause contained one posited and one negated literal, the left hand side would sum up to 0 and
so would the right hand side.

The lemma implies the following theorem:
Theorem A proposition S has a unit refutation (unsatisfiability of S proved by unit resolution)

if and only if the linear programming relaxation of S is infeasible.
For satisfiable propositions, the power of the linear programming relaxation exceeds that of unit

resolution. This is because for satisfiable propositions we may get lucky while solving the linear
programming relaxation and hit on an integer solution and thus prove satisfiability. The statement
implies that there might exist a special class of satisfiable propositions for which unit resolution
fails to come up with a solution (perhaps because we’re left with a unit clause free formula at some
point), but a feasible solution for the linear programming relaxation happens to be integer.

One such class of propositions are called balanced propositions. These are propositions whose
relaxations are integral polytopes. Using a simplex method to solve the relaxation will guarantee us
a vertex feasible solution that is integer and hence prove satisfiability. However, if the proposition
itself has no unit clauses, unit resolution would not achieve anything.

For refutable propositions on the other hand, the power of unit resolution and the relaxation
are identical. That is, if unit resolution can refute a proposition, then so can solving the linear
programming relaxation and vice versa. Inversely, if unit resolution fails to refute a refutable
proposition, then the linear programming relaxation also has no hope of refuting it and vice versa.

2.3 Horn Polytopes

We now proceed to analyze special classes of propositions by looking at properties of their linear
relaxations and attempting to derive insight into solving their corresponding ILP representations
efficiently. One such special class of propositions are Horn propositions.

A Horn rule has either no atoms or a single atom in its consequent. A Horn clause must
therefore contain at most one positive literal since consequents of a rule correspond to positive
literals inside a clause. A Horn clause system is a system in which all clauses are Horn.

7

2.3.1 Horn Resolution

Horn systems are highly structured propositions where satisfiability can be solved in linear time
(in the number of literals) using a restricted form of unit resolution. The restricted form of unit
resolution resolves only unit positive clauses since a Horn clause system with no unit positive clauses
is trivially satisfiable by assigning 0 to the rest of the literals. This is because each clause must
then have at least one negated literal, for none of the clauses may contain a single positive literal
(it would then be unit positive) or two or more positive literals (it would then be non-Horn). Thus
assigning 0 to all literals will ensure all clauses are satisfied simultaneously.

The restricted form of unit resolution can therefore completely solve the satisfiability problem
on a Horn system:

1. Look for only unit positive clauses and apply unit resolution on them.
2. If no unit positive clauses are found, assign 0 to all literals in the formula, declare the propo-

sition as satisfiable and stop.
3. If an empty clause is obtained, the proposition is unsatisfiable. Stop.
4. If an empty formula is obtained, unit resolution has succeeded in finding a satisfying truth

assignment. Stop.
5. Repeat step 1 using the resulting simplified formula.
In doing so, we take advantage of a basic property that Horn systems are closed under the

deletion of literals and clauses and therefore applying unit resolution on a Horn system results in
a new system that is also Horn.

Consider the Horn clause system (x3) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3). Applying unit resolution once
yields (x1 ∨ x̄2)∧ (x̄1) with x3 set to 1. In the usual case, we might re-apply unit resolution on the
unit clause (x̄1), but because this system is Horn and there are no other unit positive clauses, we
instead assign 0 to both x1 and x2 and declare the proposition as satisfiable.

Theorem A satisfiable Horn proposition has a unique minimal model. A unique minimal model
for a satisfiable proposition S is achieved by:

(i) Setting all atoms to T only for those atoms that must be true in all models of S.
(ii) Setting everything else to F.

The restricted form of unit resolution satisfies (3i). The minimal model tries to minimize the
number of T’s assigned to the variables, or equivalently, tries to maximize the number of F’s
assigned.

The minimal model is unique because of the following argument. Assume there exists two
minimal models T1 and T2 different from each other. If an atom set to T in T1 is set to F in T2 and
T1 is a model, then T2 cannot be a model because (3i) sets only those atoms that must be true in
all models to T since an atom is set to T only when it shows up as a unit positive clause (positive
singleton).

Thus if there exists two minimal models T1 and T2, they must be identical to each other. 2

Even if there exists more than one unit positive clause to resolve on, the procedure will yield
the same minimal model regardless of which clause unit resolution picks to resolve on.

The above theorem also follows from a very strong closure property satisfied by the set of models
of a Horn proposition.

Lemma If T1 and T2 are models for a Horn proposition S, then so is T1 ∧ T2. (An atom is set
to true in T1 ∧ T2 if and only if it is true in both T1 and T2.)

Proof: Assume T1 and T2 are models for a Horn proposition S, but T1 ∧ T2 isn’t.

8

1. If a clause C is negative (meaning no positive literals), then T1 ∧ T2 must set all literals in
C to T since setting even one literal to F will satisfy the clause since all literals are negated.
But the only way all literals can be set to T is if both T1 and T2 set all corresponding literals
to be T which causes both T1 and T2 to falsify C since all literals are negated. Therefore
neither T1 or T2 can be models and this is a contradiction.

2. If C has a single positive literal xk then at least one of T1 or T2 (say T1) must set xk to F,
for otherwise T1 ∧ T2 would satisfy C. But since T1 is a model, there must be at least one
negated literal x̄j in C (no further positive literals are allowed since C is Horn) set to F, but
this would automatically make the corresponding negated literal in T1 ∧ T2 F causing C to
be satisfied. Again a contradiction.

This concludes that models of Horn propositions are closed under the “∧” operation. 2

Definition Two propositions S1 and S2 are said to be equivalent if they are built on the same
ground set of atoms and if they have the same set of models.

It is easy to see that two propositions are equivalent if and only if S1 implies S2 and S2 implies
S1. We shall use the notation S1 ⇔ S2 for equivalent propositions S1 and S2.

Definition A proposition S is called H-equivalent (or Horn equivalent) if it is equivalent to
some Horn proposition.

So if S is Horn equivalent to some Horn proposition H, the above lemma suggests that the set
of models of H and hence of S is closed under the ∧ operation. Now suppose we have a non-Horn
proposition S that is closed under the ∧ operation, does it suggest that there exists some Horn
proposition H to which S is H-equivalent? It turns out that this is indeed the case because of the
following reasoning.

If S is non-Horn, it must contain a clause C of the form xk ∨ xl ∨D, where D is a disjunction
of zero or more literals. If every model of S satisfies xk ∨D we can delete xl from C and obtain
an equivalent proposition. Likewise if xl ∨D is satisfied by all models, we delete xk from C. We
continue this process, gradually deleting the excess positive literals from clauses in S, until we
obtain a Horn proposition equivalent to S or we are unable to apply the deletion criteria. If we
are unable to apply the deletion criteria it is because we have two models T1 and T2 and a clause
xk ∨ xl ∨D such that

T1(xk) = True, T1(xl) = T1(D) = False

T2(xl) = True, T2(xk) = T2(D) = False

But then T1 ∧ T2 cannot satisfy C, which contradicts our assumption that the models of S are
closed under the ∧ operation. Therefore the deletion process does not get stuck and S is reduced
to an equivalent Horn formula.

We thus have the following result:
Theorem The set of models of a proposition is closed under the “∧” operation if and only if

the proposition is H-equivalent.

2.3.2 The Integer Least Element of a Horn Polytope

The rich syntactic and semantic structure of Horn propositions is revealed as special integrality
properties of the LP relaxation. This helps shape characteristics of the polytopes formed from the
linear programming relaxation of Horn propositions, that is, Horn polytopes.

9

Definition A least element of a polyhedron P is a point xmin ∈ P , all of whose individual
components are no larger than the corresponding components of any x in P . In mathematical
terms, xmin is a least element if xmin ≤ x ∀ x ∈ P .

Of course, not every convex polyhedron has a least element. In the two-dimensional case, the
least element, assuming one exists, will be somewhere at the bottom-left of P . If the bottom-most
left-most point is not a vertex of the polyhedron, it is clear that it cannot possibly be a least
element. It is also clear that if a least element exists, then it must be unique since if there exists
a second least element different from the first, it would automatically imply one of the two least
elements is not least anymore.

Theorem A convex polyhedron defined by a system of linear inequalities

P = { x | Ax ≥ b, x ≥ 0}

has an integral least element if the following conditions are met:
1. b must be integral
2. b must be such that P is non-empty
3. each row of A must have at most one positive component
4. all positive components of A must be equal to 1
If b ≤ 0 it is evident that P contains a least element xmin = 0. If b > 0, [1] (p. 35) proposes a

technique to obtain the least element of P using a lower bound escalation scheme which performs
a sequence of translations until the least element is resolved.

Since each inequality associated with a Horn clause will have at most one positive coefficient
on the left-hand side and further all positive left-hand-side coefficients will be equal to 1, we are
assured the existence of an integral least element for all Horn polytopes generated by satisfiable
Horn propositions. Further, this least element is the incidence vector of the unique minimum model
of the proposition found by Horn resolution since both methods try to maximize the number of F’s
(0s) assigned to the variables.

It is important to note that although polytopes generated by satisfiable Horn propositions are
guaranteed to have an integral least element, the polytope need not itself be integral.

Thus, one can find the integral least element by optimization since we are guaranteed that for
satisfiable Horn propositions, a least element exists and this least element needs to be a vertex
of the polytope from the way a least element was defined. Hence a simplex algorithm that hops
from vertex to vertex will eventually hit upon this integral least element which corresponds to the
unique minimal model, thus proving feasibility of the ILP formulation, and hence satisfiability.

Summarizing this idea, for any vector c ∈ <, all of whose components are positive (the simplest
would be a vector of all ones), the linear program

min { cT x | x ∈ Horn Polytope}

is optimized uniquely by the integral least element. Of course, this optimization model is nowhere
as efficient as Horn resolution in proving satisfiability. However, the dual of the optimization model
above may provide additional mathematical insight to give us some idea for polytopes generated
from unsatisfiable Horn propositions.

10

2.3.3 Dual Integrality of Horn Polytopes

The dual of the integer linear representation of a satisfiability problem has an interesting interpre-
tation discovered by Jeroslow and Wang. When the clauses are unsatisfiable, the values of the dual
variables are proportional to the number of times the corresponding clauses serve as premises in a
refutation.

Any satisfiability problem can be written as the following 0–1 problem:

MIN x0

s.t. x0e + Ax ≥ a
xj ∈ {0, 1}, j = 0, 1, . . . , n

The linear relaxation of this problem is:

MIN x0

s.t. x0e + Ax ≥ a (u)
−x ≥ −e (v)

x ≥ 0

and its dual is:
MAX ua− v

s.t. ue ≤ 1
uA− v ≤ 0
−u ≤ 0
−v ≤ 0

The dual solution implicitly indicates how many times each clause is used in a resolution proof
of unsatisfiability.

Theorem Let Ax ≥ a represent an unsatisfiable set of Horn clauses. Then if (u, v) is any
optimal extreme point solution of the dual, there is an integer N and a refutation proof of unsatis-
fiability such that Nui is the number of times that each clause i is used to obtain the empty clause
in the proof.

For example, consider the following unsatisfiable Horn clauses:

x1

x̄1 ∨ x2

x̄2

We add an artificial variable x0 to check satisfiability:

MIN x0

s.t. x0 + x1 ≥ 1 (u1)
x0 − x1 + x2 ≥ 0 (u2)
x0 − x2 ≥ 0 (u3)

The optimal solution to the primal is x̄ = (x0, x1, x2) = (1
3 , 2

3 , 1
3) while the corresponding dual

solution is ū = (u1, u2, u3) = (1
3 , 1

3 , 1
3) which is non-integral. The theorem states that for some N ,

Nu gives the number of times each clause is used to obtain the empty clause. The refutation is
achieved by first resolving the first two clauses to obtain x2, and then resolving x2 with the third
clause to obtain the empty clause. So each clause is used once and N = 3.

Unfortunately, the dual multipliers ui do not in general encode the structure of a refutation
proof and therefore do not represent a complete resolution proof.

11

3 Summary of Findings

1. We show that the two questions of whether a formula is satisfiable and whether one formula
implies another are one and the same. Each form may be converted to the other and therefore
both problems are equally hard.

2. In Section 2.2.1 we explain why the proposed optimization model for the inference problem
of the form (S1 → S2) works. We begin by assuming that S1 is CNF and S2 is given by single
clause C. We then extend the argument to the case where S2 is given by more than just a
clause, but is still CNF.

3. For satisfiability problems on Horn systems, we may be able to speed up Horn resolution a
little by skipping resolution on a unit positive clause by making the substitution xj = x̄j

since Horn resolution only resolves unit positive clauses. We must of course remember to
switch the corresponding value for the propositional atom for each of the modified formula’s
models. However this substitution is permissible only if every other clause containing x̄j does
not already contain a positive clause so as to remain Horn after the substitution.

4 List of Theorems

1. Theorem Any formula in propositional logic is equivalent to a CNF formula whose length is
linearly related to the length of the original formula.

2. Theorem A proposition S has a unit refutation (unsatisfiability of S proved by unit resolu-
tion) if and only if the linear programming relaxation of S is infeasible.

3. Theorem A satisfiable Horn proposition has a unique minimal model. A unique minimal
model for a satisfiable proposition S is achieved by:

(i) Setting all atoms to T only for those atoms that must be true in all models of S.
(ii) Setting everything else to F.

4. Theorem The set of models of a proposition is closed under the “∧” operation if and only if
the proposition is H-equivalent.

5. Theorem A convex polyhedron defined by a system of linear inequalities

P = { x | Ax ≥ b, x ≥ 0}

has an integral least element if the following conditions are met:
(a) b must be integral
(b) b must be such that P is non-empty
(c) each row of A must have at most one positive component
(d) all positive components of A must be equal to 1

6. Theorem Let Ax ≥ a represent an unsatisfiable set of Horn clauses. Then if (u, v) is any
optimal extreme point solution of the dual, there is an integer N and a refutation proof of
unsatisfiability such that Nui is the number of times that each clause i is used to obtain the
empty clause in the proof.

12

Bibliography

[1] Vijay Chandru, John N. Hooker, “Optimization Methods for Logical Inference”, John Wiley

& Sons, Inc., 1999.

	Introduction to SAT
	Special Cases in Propositional Logic
	Basic Concepts
	Unit Resolution

	Integer Linear Programming Models
	Optimization and Inference
	The Linear Programming Relaxation

	Horn Polytopes
	Horn Resolution
	The Integer Least Element of a Horn Polytope
	Dual Integrality of Horn Polytopes

	Summary of Findings
	List of Theorems
	Bibliography

