
UNIVERSITY OF WATERLOO
Faculty of Engineering

Nanotechnology Engineering

Self-Configuring and Self-Healing Web Services

in Complex Software Systems

Special Projects Group
University of Waterloo

Waterloo, ON

Prepared By:

Rajesh Kumar Swaminathan
2B Nanotechnology

ID #20194189
rajesh@meetrajesh.com

May 12, 2008



Rajesh Kumar Swaminathan
#27-8289 121A St.
Surrey, BC V3W 1G6

May 12, 2008

Dr. Marios Ioannidis, Director
Nanotechnology Engineering
University of Waterloo
Waterloo, Ontario N2L 3B9

Dear Dr. Ioannidis,

This report, entitled, “Self-Configuring and Self-Healing Web Services in Complex Software Sys-
tems” is my third work term report for the two terms immediately following 2B spanning the
months of September 2007 to April 2008. This report was completed during my work term at the
University of Waterloo as part of the Special Projects Group (SPG) responsible for delivering the
better and improved version of the CECS IT project, i.e. Jobmine. The purpose of this report is
to investigate what is involved in building autonomous to semi-autonomous web services that can
self configure themselves (a process known as service bootstrapping), self-manage, and of course
self-heal in the event of a malfunction. There may be many methods to achieve this goal, so the
goal of the report is to analyze each method’s pros and cons in the light of relevant constraints.

The idea for this topic was hinted to me by my supervisor Trevor Grove. Trevor was very interested
in knowing the kinds of difficulties people have encountered in constructing autonomous software,
and how they have traditionally approached them. He wanted to know the current state of the
universe and what the world thought of hard problems such as service bootstrapping. Trevor
was also interested in a detailed analysis of advanced topics such as software robustness, which
subsumes self-healing of web services, and how concepts like roll-back and roll-forward can help
make a software system more stable and consequently more reliable.

The topic of this report proved itself to not only be insightful and exciting, but a topic that, I hope,
will be of immense usefulness to the SPG group and the software product we will be shipping in
about a year or so. There are a lot of issues, benefits and outcomes to be discussed while writing
software that runs, manages and heals itself autonomously; however, due to the size limitations of
this report, I have restricted myself to a select few targeted topics that are of direct relevance to
our applications design.

I vouch to the fact that I have received no further help other than what is mentioned above and in
the references section in writing this report. I also confirm that this report has not been previously
submitted for academic credit at this or any other academic institution.

Sincerely,

Rajesh Swaminathan
20194189



Contributions

As software developer for the Special Projects Group (SPG) here at the University of Waterloo,

I worked on the new and improved version of the software underpinning co-op, i.e. Jobmine.

I was primarily responsible for writing code for a crucial component of the software, called the

“Configurator”, that acted as the manager of all web services within the system.

Our major milestone goal for the eight-month term was to get out a demo portal up and running

for students, employers, and CECS staff to look at and critique. We wanted to release our software

incrementally so we could get feedback on an ongoing basis.

The Configurator, arguably was the “brain” of the entire software system. It was aware of all the

web services up and running, the stacks and virtual machines they were running on. It would

resolve dependencies between services, and it would take appropriate action if one of the services

died or lost connectivity. The configurator would also make intelligent decisions to balance user

load across multiple servers for maximum performance. This was critical since we wanted the new

Jobmine system to be available 24/7.

I was also responsible for writing code that would help all services log their actions to a database.

This helper code had to be very generic since it was to be used by all web services in the system,

and would write all log requests to an internal queue, which would then get processed later.

Overall, I had completed most (∼90%) of the specified functionality of the Configurator over the

period of 8 months.

iii



Summary

The purpose of this report is to investigate what is involved in building autonomous to semi-

autonomous web services that can self configure themselves (a process known as service bootstrap-

ping), self-manage, and of course self-heal in the event of a malfunction. There may be many

methods to achieve this goal, so the goal of the report is to analyze each method’s pros and cons

in the light of relevant constraints.

This report attempts to look at currently available technologies and to suggest improvements that

help towards the overall goal of software robustness. Software robustness refers to the quality of

the software that makes it available at all times, flexible, and most importantly, resilient. The

report then goes through a detailed survey of existing techniques for dynamically composing a

set of web services each offering specialized functionality: detection, monitoring, and resolution

of unforeseen situations. The report then concludes with recommendations for implementing self-

healing services. The report identifies and classifies major pitfalls in service-oriented architectures

and advocates best practices to deal with them autonomously, thereby making them self-healing.

The report is split into four sections. Section 1 contains an introduction to the problem, why it is

important, and the various issues involved in tackling it. Section 2 dives into the nuts and bolts of

three major components of self-management: bootstrapping, monitoring and recovery. Section 3

contains an analysis of the core of this report: the concept of self-healing web services. The analysis

contains a detailed specification of the various architectural requirements needed to implement a

self-healing system and the common issues that come up during implementation. Section 4 wraps

up the topic with a concluding summary of the various topics discussed throughout the report and

is intended to complement this summary.

iv



Conclusions

In conclusion, a useful approach to on-the-fly automatic error detection and recovery has been

described in this report. The report has also described various important issues of designing a self-

healing system based on available literatures. In order to develop an effective self-healing system

model we must be conversant to all these points described in this report. The proposed approach

is an important one toward self-healing software design, which is very much a research topic for

developing reliable web services and web applications of the future.

v



Recommendations

Based on the analysis and conclusions in this report, the following recommendations are proposed.

1. Possibly change from a heartbeat system to a service broadcast system to identify dead

services.

2. Implement a tightly-coupled .NET web service in front of each SQL Server cluster so that we

can treat SQL Server as just another regular web service.

vi



Table of Contents

Contributions iii

Summary iv

Conclusions v

Recommendations vi

List of Figures viii

List of Tables ix

1 Introduction 1

2 What is Self-Configuration? 2

2.1 Service Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Software Robustness and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Self-Healing Web Services 6

3.1 What is Self-Healing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Architectural Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Concluding Summary 12

References 13

vii



List of Figures

1 Nervous System Analogy Acting on a Stimulus . . . . . . . . . . . . . . . . . . . . . 7

viii



List of Tables

1 Common Software Faults and Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ix



1 Introduction

Almost all of today’s modern software systems, due to the inherent complexity involved in them,

need to cope with two major influences:

1. Dynamism

2. Flexibility

An analysis of the current situation with respect to web services can be conducted by looking

at current technologies such as the Web Services Description Language (WSDL). WSDL and its

associated counterparts have proven to be insufficient to address current requirements relating to

dynamism and flexibility.

One way to make software systems much more robust is to split individual functionality into “web

services” and to integrate them tightly into a highly heterogeneous system. This service-oriented

approach is commonly known as service-oriented architecture (SOA). SOAs are highly flexible in

the way they integrate components in an environment of constantly changing and evolving contexts.

Therefore the biggest advantage to using SOAs is that they allow businesses to integrate their var-

ious components (services) across business boundaries in a flexible and coordinated fashion. SOAs

can tackle a high level of dynamicity, and can therefore operate in very unstable, unpredictable,

and evolving environments.

A web service, to put it in formal terms, is therefore a stand-alone piece of software that is highly

specialized and is designed to perform one task and one task only. This web service may use the

help of other services to perform its task or may delegate its own task to another service depending

on the circumstances. The entire software system is then a pool of web services all interacting with

one another to get the job done.

Requirements for a high degree of flexibility and dynamism mean that all available functionality

need to be discovered dynamically at run-time. The parameters required for a service’s proper

functioning are negotiated on-the-fly with the other service(s) directly or through a middle-man,

known as the “service broker”, which holds all information about all currently running services.

1



There are many examples in the area of ambient computing and automotive applications that

need to cope with constantly changing requirements and configurations. It would therefore be

unwise to hard-code these configurations into the software itself, but instead, have the configuration

parameters negotiated dynamically by querying the current state of the universe.

This report attempts to look at currently available technologies and to suggest improvements that

help towards the overall goal of software robustness. Software robustness refers to the quality of the

software that makes it available at all time, flexible, and most importantly, resilient. The report

then goes through a detailed survey of existing techniques for dynamically composing a collection

of web services each offering specialized functionality: detection, monitoring, and resolution of

unforeseen situations. The report then concludes with recommendations for implementing self-

healing services. The report identifies and classifies major pitfalls in service-oriented architectures

and advocates best practices to deal with them autonomously, thereby making them self-healing.

2 What is Self-Configuration?

Self-Configuration is the ability for software to configure itself with respect to the policies in order

to adapt to dynamically changing environments. The language in which the policies are specified

must be versatile enough to be able to specify the goals of the configuration. [1]

Due to the highly dynamic nature of the aforementioned complex software systems, it is difficult,

if even possible, to identify before deployment all the components that define a given system. This

adds uncertainty to the system. For example, a given service may need to respond to a given request

by spanning the request across multiple executions; however, this may not be always possible since

the context is always changing therefore altering the set of available services. This means we have

a new problem using service oriented architectures (SOAs): discovery of services also need to be

considered and handled at run-time.

The high degree of dynamicity means that it is often difficult to analyze if a system is trustworthy

before deployment. Instead, a set of methods and tools are pre-programmed that help enforce

2



trust during run-time. The entire service-oriented architecture is based on trust and black-box

abstraction: each service is highly specialized and programmed to do its job best.

There are three major phases involved in the implementation of a highly robust system:

1. The selection or composition phase: Also known as service bootstrapping, the phase

involves discovering available services, negotiating working parameters, and implementing

desired behaviour. This step is necessary to compose services together to meet the desired

goal of the software.

2. The monitoring phase: This phase involves understanding if a given service is behav-

ing properly, both functionally and non-functionally. This phase is crucial to immediately

knowing when a service is down so that appropriate action can be taken.

3. The recovery phase: This phase involves reacting to disastrous situations, unexpected

failures, shutdowns, etc. in a suitable manner for recovery. This phase is the key component

of self-healing services.

A service-oriented architecture implies that the composition of all available services implements all

required functionality as specified by predefined goals. A key part of the service environment is to

analyze, monitor, and enforce non-functional requirements as well.

2.1 Service Bootstrapping

Bootstrapping refers to the selection or composition phase where each service, upon coming up,

announces itself to the world of its presence. It then proceeds to detect all other services that are

required for its own functioning. These other services are known as service dependencies. The

service then negotiates important working parameters with other services, configures itself with

those parameters, at which point the service is in a “ready” state, available to process incoming

requests.

If the selection phase aborts unexpectedly, simply shutting down the system is not, in general,

going to be a solution. The environment should be such that new services should make the best

3



of the available services in this “service ecosystem”. Essentially, a solution needs to be found that

uses what is available in the event a perfect match does not exist. This service may then permit

calls only on a subset of its methods. Once all dependencies have been resolved at a later time, the

service should then revert to offering its entire functionality.

2.2 Monitoring

The monitoring phase comprises of a set of specialized probes that allow a monitoring service to

detect unexpected situations in the working of a service. This happens when a) a service does not

answer to a call within a given time-frame, b) when a service does not fully implement a predefined

contract, be it either functional or non-functional, or c) when a service responds with an exception

or an error message. Each service must therefore implement a heartbeat which can be called by

the monitoring service to ensure the service is responding to calls and is not dead.

Monitoring is crucial to early detection of problems. The earlier a problem is detected, the easier

it is to be fixed before the errors spiral inward causing multiple services to malfunction. Upon

detection of a problem, the service cannot be asked to simply shutdown. Since SOAs are based on

trust, causing one service to shutdown would cause virtually all of the services to shutdown due

their tight mutual inter-dependencies.

One of the easiest monitoring mechanism uses the idea of packet broadcasting. Each component

of the system periodically broadcasts an “aliveness message”, either to its neighbours, or to a

central monitoring service. The central monitoring service keeps track of when it last heard a reply

from each of the components it thinks should be alive. If it doesn’t hear from a service for a set

period of time, the monitoring service triggers some appropriate response. This is a fairly primitive

mechanism, but works quite effectively. However there is catch: the frequency of these “aliveness

messages” from each service determines the speed with which faults can be detected. This therefore

puts a bound on the shortest time before which a response can be sent out.

4



2.3 Software Robustness and Recovery

Why is Robustness Important?

Complex systems are faced with the need to react appropriately to unexpected system crashes,

power failure, network disconnect, software malfunction, etc. by suitable recovery actions that

either compensate the anomalies or at the very least mitigate the effects of the unavailable service.

The recovery actions must handle the deviation and allow execution to proceed normally. The

difficult part is to allow any or all of this happen autonomously. This autonomous detection,

prevention, and mitigation of service failure is known as self-healing.

Software does not have the problems that hardware does, such as rusting or oxidation. But software

does fail. Software can be hacked and modified by other software. Software can be sensitive

to bad programming and issues might not appear till a specific sequence of code is executed.

Unforeseen situations can result in unexpected bottlenecks, buffer overflows, etc. Software that

is out-of-spec can cause many types of problems ranging from annoying slowdowns to failures,

crashes, and malicious actions such as destroying data or using the system to attack other systems.

Unfortunately, software often does not obey a specific MTBF (mean time between failure), MTTR

(mean time to repair) or the related mathematical probability distributions. Any change in the

status quo can result in a possibly risky situation when it comes to software — doing anything

different, or doing something that has not been done for an extended period of time has its potential

risks. And this concept extends to the tools used to create the software too.

How should software robustness be approached?

In a mission critical system, each major subsystem or component of hardware and software should

be reviewed for robustness. A list of the possible things that may go wrong in the system, along

with the severity of these problems must be documented. These problems must be structured

according to the system’s major sections (e.g. data in databases, sequence of commands, etc). The

unwanted effects of these mishaps should then be detailed, along with methods for their detection,

procedures for recovery (should they occur), and procedures that should be followed to mitigate

5



any inevitable non-robustness must be clearly documented before deployment into a production

environment.

Software robustness must be approached in a manner that manages to be specific with regards to

the various sections of the system and mishaps that may occur, but the analysis must be strictly

agnostic to the kind of technologies used in the final implementation. This ensures that the analysis

is useful even if the technology stack was to change in the future.

3 Self-Healing Web Services

In a nutshell, “self-healing” means to recover from failures. A system should be able to notice

an injury and then act on it. In the field of software, injury is identified usually as a failure of

a participating machine. A failure can happen in its hardware or the software running on it or

a malfunctioning communication connection such as a network defect. The software would then

proceed to repair itself in the most logical way given the circumstances. The remaining parts should

try to find a way to continue working without the faulty part until such time. [2]

This section deals with the various issues that spring up while designing a self-healing software

application that relies on the on-the-fly error detection and repair of web services. Highly dynamic

systems need a fair amount of fault tolerance toward buggy code and/or hardware, and autonomous

healing is the first step towards this goal.

This section aims to illustrate the critical points of self-healing software system and what is involved

in constructing one.

3.1 What is Self-Healing?

Self-healing simply refers to the process of dealing with bugs, uncertainties, crashes, failures, and

unexpected shutdowns in a suitable manner during run-time. This can be achieved by automatically

restarting the service that went down or by awakening another instance of the same service elsewhere

in the stack.

6



At its very basics, self-healing deals with imprecise specification, environment uncertainties, and

continuous system reconfiguration and evolution. Software capable of detecting and reacting to

software malfunctioning is known as self-healing software. Such software has the ability to examine

failures in the system and take appropriate measures. The best measure would be someway for

the system to repair itself in a logical way. This is a huge jump from simply notifying the system

administrator as system administrators are typically unavailable at 3 in the morning, and most

modern software is expected to function 24 hours a day. To use the biological analogy, the desired

response is not very much unlike that delivered by the nervous system to the muscles as seen in

Figure 1.

Figure 1: The nervous system acts in an appropriate and timely fashion upon receiving a stimu-
lus. [3]

The software being constructed by the Special Projects Group is being designed as a mission-

critical system that permits at most only one hour of downtime per year. Such a system needs to

be extremely robust, capable of handling all but the most catastrophic of scenarios. To accomplish

this, a thorough robustness analysis needs to be conducted to ensure that the system is capable of

accomplishing this goal. While the system is not being designed for the proverbial 100 year storm,

it is being designed for the 10 year storm scenario.

7



3.2 Implementation Issues

By its definition, a self-healing system will need to have full knowledge about its expected behaviour

in order to examine whether its actual behaviour deviates from its expected behaviour with respect

to the given environmental characteristics. A model needs to be constructed to address what

specific faults or injuries will be dealt with based on the fault source, and what will be delegated to

some other piece of software. For example, faults such as operational errors, uncaught exceptions,

defective system requirements, or implementation errors, are most likely to be the categories of

faults to be dealt with by self-healing software.

A self-healing system needs to be able to discover, diagnose, and try to react to bugs and failures

immediately. Self-healing components need to have the ability to detect system malfunctions,

upon which appropriate corrective actions are initiated without disrupting the environment. Such

corrective action may involve a component changing its own state, or causing changes in other

components of the system to make them match the state expected by a malfunctioning service. At

this point, the rest of the system must continue to work in a “handicapped” state in the absence of

the faulty component, either offering a reduced subset of functionality, or queuing its own requests

to be processed at a later time.

There are many possible crashes in different systems, but the three most commonly occurring are

defective hardware, crashed software, and broken network connectivity. [7] As noted previously,

the amount of time before which a response can be sent out is limited by how frequently heartbeat

requests are sent out. Faster response time comes with a higher cost of communication.

When a system crashes, all data on the system is lost. Therefore, all data needs to be copied in

advance, so that a redundant copy can be fetched and used to continue work. One solution that

quickly comes to mind is to duplicate all data, so that in case of a server crash, the lost data can

be recovered from a backup server. However, to accomplish this, a copy of all data must be sent

immediately over the network and this incurs much communication overhead and is therefore not a

very feasible solution. An alternate approach is to store all applied data in memory and to redo the

missing executions upon any data loss. However, this too would require a sophisticated mechanism

8



to decide which data can be deleted from memory and which data needs to remain.

In general, third-party components get in the way of self-healing services. It can be quite a challenge

to develop a self-healing system that deals with the failure of a third-party component whose internal

workings are hidden. The same can be said for quick patches that were applied after deployment.

In summary, the best self-healing approach is to validate at run-time a series of assertions. These

assertions will be derived from a knowledge of application semantics, internal workings, and appli-

cation domain specific knowledge of the system’s expected behaviour. Self-healing is then achieved

by examining whether the system’s actual behaviour deviates from its expected behaviour in re-

lation to the system’s environment. The general idea is to detect errors on-the-fly in code and to

autonomously recover those errors, thereby allowing a system to continue processing requests after

it has sustained an error serious enough to require a restart.

3.3 Architectural Requirements

A self-healing system heals the system during times of distress by modifying its own behaviour at

run-time in response to changes in its environment. The most important changes in the environment

may be categorized into the following:

1. Resource variability

2. Changing user needs

3. Mobility

4. System errors

The most important tasks of a self-healing system may be described as follows [4]:

1. Monitoring the system at runtime

2. Planning the changes

3. Deploying the change descriptions

4. Enacting the changes

9



Given the above activities and characteristics of architectural issues (in Section 3.2), self-healing

systems need to implement the following architectural requirements [5]:

1. Awareness: Self-healing software (SHS) must support monitoring of the individual compo-

nents’ health, heartbeat and performance. Various measurements relating to state, behaviour,

correctness, reliability, etc. need to be measured and data collected. Comparisons of these

measures with known “correct” measurements must be performed and any anomalies reported.

2. Adaptability: SHS must have the ability to change the system’s structural, topological,

behavioural, interactive, and run-time aspects.

3. Dynamicity: Must be able to adapt to situations during run-time.

4. Autonomy: Ability to plan, deploy, and enact necessary changes automatically without

human intervention.

5. Observability: SHS must be able to monitor its environment for missing services and must

also notice missing functionality reappearing. It must therefore be able to perform in degraded

mode until the problem is addressed.

6. Robustness: SHS must effectively respond to a dead or disconnected service, or any other

unforeseen operating circumstances. Various threats may be imposed by the system’s external

environment, namely malicious attacks, unpredictable behaviour, and unintended system

usage. In addition, SHS must be able to respond to internal threats suchs as errors, faults,

and failures within the system itself.

7. Distributability: SHS must be able to react nicely to varying traffic, and must be able to

accommodate sudden spikes in usage by effectively load balancing requests across services.

SHS must be able to start and stop redundant services automatically as desired.

8. Mobility: Self-healing systems must provide the ability to dynamically change, during run-

time, the logical locations of a system’s individual components.

10



3.4 Implementation Details

Reliability and ubiquity are absolutely critical in a typical mutli-tier computing infrastructure that

uses a pool of web applications and web services in tandem. However, a number of failures occur

nonetheless because of bugs in the source code, uncaught exceptions, thread deadlocking, etc. The

most common faults and their corresponding remedies are detailed in Table 1.

Table 1: A list of common faults and fixes in traditional multi-tier architecture. [6]
Faults Fixes

1. Source code bugs Reboot Tier and/or service, send
notification to administrator

2. Uncaught exceptions Micro-boot service or component
3. Deadlocked threads Micro-boot service, abort request
4. Buffer contention Reparation the memory across various buffers
5. Aging Reboot to reclaim leaked resources
6. Read/Write contention on Repartition table to balance accesses
table block ground partitions

Self-healing web applications need to deal with these kinds of failure, which can show up in both

the system level as well as the logical level. Once the failure has been detected, the service needs

to be able to make an optimal choice and solve the problem by reconfiguration. This “healing

behaviour” must adhere to specified system-level policies. We can either cancel the request and try

again at a another time hoping the problem fixes itself, or we can abandon the service and try to

find another service that would process the request.

Self-healing software also needs to be equipped with a good test harness and test data to ensure

the system responds to stated faults while keeping system-level policies in mind. We could produce

a set of assertions based on the application’s semantics. These assertions can then be validated

during run-time against a known set of data.

11



4 Concluding Summary

A useful approach to on-the-fly automatic error detection and recovery has been described in this

section. The report has also described various important issues of designing a self-healing system

based on available literatures. In order to develop an effective self-healing system model we must be

conversant to all these points described here. The proposed approach is an important one toward

self-healing software design, which is very much a research topic for developing reliable web services

and web applications.

12



References

[1] Brent Miller. “The autonomic computing edge: Can you CHOP up autonomic computing?” IBM Cor-

poration.

[2] Luciano Baresi and Sam Guinea. “An Introduction to Self-Healing Web Services.” Dipartimento di

Elettronica e Informazione-Politecnico di Milano, 2005.

[3] Kunal Verma and Amit P. Sheth. “Autonomic Web Processes.” LSDIS Lab, University of Geogia Athens.

[4] Oreizy, P. and Gorlick, M.M. and Taylor, R.N. and Heimbigner, D. and Johnson, G. and Medvidovic,

N. and Quilici, A. Rosenblum, D.S. and Wolf A.L. “An Architecture-Based Approach to Self-Adaptive

Software.” IEEE Intelligent Systems, Vol. 14, No. 3, p.54-62, 1999, USA.

[5] Goutam Kumar Saha. “Software-Implemented Self-healing System”. Center for Development of Ad-

vanced Computing, Kolkata, India.

[6] Cook, B. and Babu, S. and Candea, G. and Duan, S. “Toward Self-Healing Multitier Services.” Technical

Report of the Duke University, 2005.

[7] Liu, J. “Self-X Property and Application in Web Servers”. Fachbreich Informatik. TU Darmstadt.

13


	Contributions
	Summary
	Conclusions
	Recommendations
	List of Figures
	List of Tables
	Introduction
	What is Self-Configuration?
	Service Bootstrapping
	Monitoring
	Software Robustness and Recovery

	Self-Healing Web Services
	What is Self-Healing?
	Implementation Issues
	Architectural Requirements
	Implementation Details

	Concluding Summary
	References

