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1 The Factorial

We begin by defining the factorial of an arbitrary number n ∈ R.

For a regular natural number n ∈ {0, 1, 2 . . . }, we define the factorial as

being

n! = n(n − 1)! = n(n − 1)(n − 2) · · · 1

where we’ve been thought by rote, without explanation, that 0! = 1. As

far as we know, factorials did not exist for non-real, negative, fractional or

decimal quantities.

However, Euler noticed that
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∞∫
0

xe−xdx = lim
b→∞

b∫
0

x
d

dx
(−e−x)dx

= lim
b→∞

−xe−x|b0 −
b∫

0

−e−xdx


= lim

b→∞

[
−xe−x − e−x

]b

0

= lim
b→∞

[
−be−b − e−b + 1

]
= 0 − 0 + 1

= 1 = 1!

∞∫
0

x2e−xdx =

∞∫
0

x2 d

dx
(−e−x)dx

= lim
b→∞

[
x2 · −e−x

]b

0
−

∞∫
0

−e−x · 2xdx

= lim
b→∞

[
−b2e−b

]
+ 2

= 2

= 2 · 1 = 2!

∞∫
0

x3e−xdx = lim
b→∞

[
x3 · −e−x

]b

0
−

∞∫
0

−e−x · 3x2dx

= lim
b→∞

[
−b3e−b

]
+ 3 · 2

= 6
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= 3 · 2 · 1 = 3!

Euler tried to interpolate and finally hit upon the creation of the following

function:

Γ(x) =

∞∫
0

tx−1e−tdt, x ∈ R

For x integer

Γ(n) =

∞∫
0

tn−1e−tdt = (n − 1)!

and

Γ(n + 1) =

∞∫
0

tn+1−1e−tdt = n!

which formally defines the factorial.

Thus Γ(n + 1)︸ ︷︷ ︸
n!

= nΓ(n)︸ ︷︷ ︸
n(n−1)!

, and is called the recurrence relation for the gamma

function.

So

Γ

(
1

2

)
=

∞∫
0

t
1
2
−1e−tdt =

∞∫
0

t−
1
2 e−tdt = · · · =

√
π
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)
=

1

2

√
π

Γ
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2 The Interesting Integral

We can now proceed to integrate

∞∫
0

xe−x3

dx

Let u = x3 = x2x, so du = 3x2dx or dx = du
3x2 = du

3u
x

= xdu
3u

Hence

∞∫
0

xe−x3

dx =

∞∫
0

u1/3e−udx

=
1

3

∞∫
0

u−2/3e−uxdu

=
1

3

∞∫
0

u−2/3e−uu1/3du

=
1

3

∞∫
0

u−1/3e−udu
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=
1

3

∞∫
0

u
2
3
−1e−udu

=
1

3
Γ

(
2

3

)

3 Discussion

Date: Fri, 02 Dec 2005 17:42:38 -0500
From: Rajesh Kumar <rajesh@meetrajesh.com>
User-Agent: Mozilla Thunderbird 1.0.6 (Windows/20050716)
To: Ted <tmamo@engmail.uwaterloo.ca>, zhu chen <uhznehc1987@hotmail.com>
Subject: Lovely Integrals

Hey Ted/Clarke,

I tried the x*e^(-x^3) integral on Maxima, a powerful computer
algebra system and a free alternative to Maple. Turns out our
solution was right.

(%i2) integrate(x*%e^(-x^3),x);

/ 3
[ - x

(%o2) I x %e dx
]
/

As you can see, Maxima can’t do the indefinite integral. Neither
can I.

(%i3) integrate(x*%e^(-x^3),x,0,inf);

2
gamma(-)
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3
(%o3) --------

3

But it CAN do the improper integral from 0 to infinity and the
answer is the same as that obtained by us in class today.

But GAMMA(2/3) seems unexpandable. I tried the following:

(%i26) gamma(1/2);

(%o26) sqrt(%pi)
(%i8) gamma(-1/2);

(%o8) - 2 sqrt(%pi)

and they both work. But

(%i27) gamma(2/3);

2
(%o27) gamma(-)

3

spits back the same answer. We might have to wait till MATH 119
to actually solve this.

However, MAPLE does the original integral amazingly fast, but
gives me the answer in terms of the WhittakerM() function, which
is not very useful to us.

However, MATLAB, spits out the right numerical answer:

>> gamma(2/3)
ans =

1.3541

Conclusion: MATLAB rules!

--
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RKS

Date: Sat, 03 Dec 2005 07:39:42 -0500
From: tmamo@engmail.uwaterloo.ca
To: Rajesh Kumar <rajesh@meetrajesh.com>
Subject: Re: Lovely Integrals
User-Agent: Internet Messaging Program (IMP) 3.1 / FreeBSD-4.6.2

Hello Rajesh:

That’s really a wonderful result. Thanks to Tenti who showed us
the Gamma funciton which we were thinking to be something
difficult. I think I will try to solve Gamma(2/3) during the
holidays. We should be able to solve it during the two weeks.

I also tried it in Matlab and I get the same answer. I was also
wondering what 1.3541 will be in terms of fractions or pi or
something. I will think about that too. Now I have to finish the
Algebra project.

Thanks for the info. I enjoy our educational discussion very
much!

Bye!
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