
Techniques of

Problem Solving

Rajesh Kumar

rajesh@meetrajesh.com

Spring 2008

pdfLatex’ed on

August 31, 2009

ii

Contents

1 Observation 1

1.1 What This Pocket Guide Isn’t . 3
1.2 Initial Reaction . 3
1.3 Creativity . 4

2 Problem Solving 5

3 Brainstorming 7

4 Analysis 9

5 Algorithms 11

5.1 Big Oh . 13

6 Iteration 15

7 Memory 17

iii

iv

Chapter 1

Observation

I’d like to begin by talking about the most basic requirement before one heads out to acquire any specialized
skill set. Notice how the title of this pocket guide is “Techniques of Problem Solving” when I could have just
as easily called it “Problem Solving Techniques” and saved an entire word. The truth is that the difference
doesn’t matter. There was no particular reason for picking one over the other. Except to get you to observe
the choice of words.

The first key trait to develop which I like to call the fundamental prerequisite of nature is the skill of keen
observation. The best problem-solvers around the world are also the best observers. Keep your eyes and
ears sharp and open at all times. Train your eyes and ears to see and hear things others won’t necessarily
see or hear on first glance. Your eyes are your windows into this world.

It is easy to listen to rock music all the time, but try listening to some classical sitar for a change and try
picking up on the subtleties. I once stood cross-eyed for practically an entire minute as I was waiting for a
bus because I was desperate to see something that others couldn’t.

Look for specifics when trying to observe. It is common to develop tunnel vision—jostling through the world
without really seeing anything. We’ve all heard about the difference between looking and seeing. Try to see,
not look. As a problem solver, your job is to fight this human default and to constantly observe; to note
situations and detail.

Professional photographers and videographers know this well. They know it because it is essential to their
job. They sharpen their eyes for photos and videos; we on the other hand want to be able to do it for
problems. The ability to see consciously and eventually subconsciously is what sets the pro problem solver
apart from the rest of the crowd.

A lot of people think that you need to be born with this trait. They attribute this trait to some psychological
genius. The good news is that this trait can be cultivated with a bit of thought and effort. I can’t tell you
how because the best way to do it differs from one person to the next. But I can help you. And here’s
how. The five sense organs receive an enormous amount of input every second. The brain conveniently
blocks out a large chunk of this input to prevent information overload. This is the basis of every magician’s

1

trick. However, the mind is pretty bad at figuring out which input to discard and which to keep. If you
start to increase the amount of information you process every second, you’re going to automatically start
seeing and hearing things other people have to struggle to see or hear. This is when magic shows become
uninteresting—you’ll start to see right through the tricks.

Good observation is a skill that must absolutely be cultivated by every budding problem solver. The payoff
will go far beyond just noticing interesting problems. You will also find yourself noticing and appreciating
more and more the inherent beauty and recurring patterns present in these problems. This is a rung above.
Once you see the patterns in the problems and begin to appreciate the beauty in them, then solving these
problems become so much more easier.

What I’m saying is that you need to start thinking about how you are going to improve your eyes and ears to
see and hear non-obvious things. A lot of the problems today are fairly non-obvious until someone observes
it and tells everyone, at which point it becomes blatantly obvious and leaves you wondering why you didn’t
see it earlier. Like how do I make uploading photos easier? Or how do I improve my touch-pad productivity?

A secretary in an office in the 1960s would never have a problem with her typewriter until you showed her a
computer. So just because a problem does not exist per se, doesn’t mean we can’t make a tool, a technology,
or a process better. Matter of fact, making things like tools better or processes like everyday tasks more
efficient are among the most common “problems” we are likely to encounter on a day-to-day basis in our
own lives. But these are really hard problems to recognize unless the rewards are monetary. And this is
precisely why we need good observational skills: problem solving always starts with problem recognition.

When I was a kid, my mum used to always emphasize the importance of having very sharp antennae that
would constantly twitch and twirl, acting as a powerful radar, and continuously process and integrate all the
interactions happening around me. Back then, I didn’t have the slightest clue what she was talking about.

Now I think I do. And I can tell you. You need to become obsessed with your observational skills. So if you
saw the title of this pocket guide and thought to yourself “Hmm, why didn’t he just say ‘Problem Solving
Techniques’ in the first place?”, then you’re well on your way. The result of this pondering isn’t as important
as is the fact that you felt it important to consider that avenue and pursue that line of thought, even if just
for a second.

When someone asks me for the date, I look at my watch because that’s the easiest way to find out the
date for me. My watch always has the correct date where the “3” should’ve been on the dial.1 But then if
someone immediately asked me the time right after, I’d have to look at the watch again. Now that annoyed
me like hell. Why did I have to look at the watch twice? It was then I realized that when the first person
asked me for the date, I was only looking at the “3”, not the entire dial. I would find the “3”, read out the
date aloud, and then forget about it immediately. So the solution to my problem was simple. Instead of
reading out the date aloud, I captured a mental picture of the entire dial and put it in my super-short-term
RAM. Anything stored in this memory died out in a few seconds. I would then read out the date from this
mental image. So if someone asked me for the time right after, it was easy. I just had to read out the time
again from this mental picture. Didn’t have to look at my watch again.

The idea is that there were two ways to achieve the same thing: read the date off directly from the watch
1The non-observant watch designers didn’t realize that this meant I couldn’t see the date 26 times a day.

2

or alternatively, read the date off a captured mental picture of the dial. The second one is clearly slower
than the first since it involves two steps, but if you do this often enough which I do because all my lecture
notes are dated, the speed difference is barely noticeable. The second one is something a more observant
individual would do since it requires you to take in and process more than you actually need.

The point I’m making is that when you see something, try to see its context as well. Instead of just focusing
on the date of the month, i.e. where the number “3” should’ve been, try to see the entire dial, the watch
within which the dial lives, the wrist where the watch is sitting, the hand that’s holding the wrist, the table
upon which the hand is resting, the fact that the table is made of wood and not plastic, and that it is made
of birch and not oak. In short, try to see as much as your eyes will permit you to see. Zoom in fully, zoom
out fully, and try to capture everything in between. Our eyes can do amazing things. Put them to good use.
Take advantage of them as much as you can. You will be glad you did when you do happen to chance upon
something non-obvious.

1.1 What This Pocket Guide Isn’t

Keep in mind that this pocket guide isn’t going to tell you how to solve a problem. There is no algorithm.
In fact, as we will see shortly, the goal is to come up with an algorithm. In fact, suspicious as it may sound,
the problem of finding an optimal way of solving a problem efficiently has been a subject of great interest
to me over the past 5 years. So much that the algorithm used to solve this very problem is the algorithm
I talk about in this pocket guide. It is, quite literally, an algorithm that can bootstrap itself and generate
other algorithms to solve problems. It is an algorithm to generate other algorithms, possibly better than
itself. This is the Dogfood principle.

This pocket guide, quite bluntly, is largely a brain-dump of all the thoughts I’ve gathered over the last 5
years ever since I consciously started hating having problems in my hand, and not doing anything about it.
The pocket guide is meant to inspire and motivate, so you the problem solver are constantly thinking about
a few key aspects as you solve your own day-to-day problems both at work as well as in your life.

Note that when I mention the word problem, people almost immediately develop a negative connotation.
Problems needn’t be as bad as they may initially sound. Think of problems as challenges, challenges that need
addressing, challenges that have solutions waiting to be discovered. Develop a positive spirit for problems
and you should be fine. A problem isn’t something to be feared, but to be respected, adorned, and eventually
solved.

1.2 Initial Reaction

Your initial reaction when you come across a problem is who cares? Well, I can almost go as far as to say
that if you don’t care about a problem enough, you won’t have the necessary motivation to keep you going
throughout the course of the problem solution. You may not care for the right reasons, but you still care.
That’s what matters. Dr. Gregory House never really cared about his patients. He mostly cared about

3

solving intriguing and seemingly unsolvable problems. He still cared, again perhaps not for the right reasons
you could argue, but he cared enough to get to the bottom of a problem and eventually solve it.

The initial reaction is very important. Guard it. Put it down in writing in your journal. It tells you if you
have sufficient interest to keep moving on with the problem or whether the problem you have at hand was
just a casual observation, an observation any random passerby could also make just as easily. Everyone is
capable of making observations. There’s only a few of us who will do anything about it. If I didn’t get
annoyed by having to look at my watch twice, I would have never done anything about it. Most people are
okay with looking at the watch twice. I’m not.

Clearly here, we’re not talking about easy problems. The easy problems have already been solved numerous
times. The problems I’m talking about here are typically socio-technical in nature and consequently “hard”2.
The size of the problem doesn’t matter. There are lots of small problems out there that need solving—
especially in your own life.

Take for example the problem of being punctual for absolutely every single appointment. Or the problem of
crossing a street with the least amount of brain processing (i.e. mental effort) so as to minimize disruptions
to my train of thought. The initial reaction to both these problems back in Fall of 2006 was just perfect:
extreme obsession. These two problems hadn’t been solved by me earlier not because they are particularly
hard or large, but because they didn’t have an immediate obvious solution. Or their solutions required some
kind of trade-off between variables. And trade-offs put us in a state of cognitive dissonance and are therefore
inherently uncomfortable.

1.3 Creativity

The classical psychology definition says creativity is a measure of communication between the different halves
or the different lobes of the brain as per the split brain theory/model. This definition unfortunately isn’t very
operational. I’m happy with my own definition which I believe to be more modern and more operational:
Creativity to me means being able to see the same thing in different lights at different times. Or even better,
at the same time.

Keep looking. Keep wandering. Always maintain a curious outlook. An idle mind yes, but a curious mind
can also be the devil’s workshop. And you will need the devil’s creativity to solve the seemingly unsolvable.
Always be intrigued. Always be prepared for surprises. Humans are a very interesting species. So much that
they continue to surprise me constantly even after 21 years of having observed them so closely.

2I haven’t defined hard yet.

4

Chapter 2

Problem Solving

I love problem solving. I always have. Not the actual answer that comes out of it, but the process. The process
of dissecting the problem, analyzing every facet, forming patterns, drawing connections, understanding the
impact, and then finally posing a decent solution. But it doesn’t stop there: The next step is optimizing the
decent solution to make it agreeable to all, or at least to as many as possible.

My favorite category of problems have always been the socio-technical type. These are technical problems,
but with an associated social element of uncertainty. Great and most prominent examples are the stock
market, traffic and pollution. One can come up with technical solutions to traffic (eg. traffic lights and
sign-boards), but getting people to actually follow them is the social element.

For example, if we understood group behaviour, we would understand that traffic control does not imply
that we need to stop everyone on the road from breaking the rules; we simply need to prevent the first
couple of people from breaking the rules — everyone else will automatically comply. This is similar to prison
guards punishing a few innocent people to keep the rest of the prisoners on track. This is the basis behind
the broken window theory.

Once again, this pocket guide focuses not on the actual solution to the problem, but the process, the technique,
and the various tricks that were used in obtaining the solution. I can almost guarantee you and I will have
different solutions to the variety of problems posed herein. Hence there is no point in talking about the
solution at all, except to illustrate the process.

I can’t stress this point enough. Most people I talk to get caught up in trying to take my solutions and
copy them. Well guess what? They come back to me saying it sucked, didn’t work or totally back-fired
on them. I’m not the least bit surprised. If you want to solve your problems, you’ll need to do your own
thinking. There’s a 0.01%, virtually nil, probability of my solution working for you. I only use the solution
to a problem to illustrate how I got to it in the first place.

Most of the solutions to my day-to-day problems are in the form of an algorithm that I can then execute
blindly. This will always be our end goal to a problem. Do not lose sight of this.

5

6

Chapter 3

Brainstorming

Most books and writings on brainstorming are simply an exhaustive list of different ways to brainstorm. Or
why it is so important to brainstorm. I will assume you know all the 101 ways of brainstorming and are
already convinced of the usefulness of brainstorming. Suffice to say that doing the homework of generating
a reasonable range of alternatives is absolutely critical to decision-making.

What I want to talk about here instead relates to tacit knowledge that only comes only after having brain-
stormed numerous times.

1. Trust your instinct. If you feel you can solve your problem without brainstorming, then do so. A lot
of the time the amount of time it takes to solve a problem to an acceptable degree is less than the
amount of time it takes to brainstorm. Just because you are an ace brainstormer doesn’t mean you
should do it all the time.

I had this issue at my work place during my last co-op term. My bosses always asked me to brainstorm
every non-trivial problem on the white board when it would’ve have taken me half as much time to just
go away and solve it. It was almost as if brainstorming was a cool thing and that a solution obtained
after brainstorming was always better than one obtained without. Neither of these statements are true.

2. Never put brainstorming as the first step to solving any problem. Always try to solve a problem
instinctively first. If you’re not going anywhere, you will automatically see the need to brainstorm at
which point you will go back, brainstorm your choices, and then come back.

Brainstorming is like a broomstick that you may want to carry as you go through a possibly cobweb-
ridden tunnel. Others might tell you it is best to always carry a broomstick before you walk into
the tunnel, but most broomsticks, i.e. brainstorming methods, are heavy and can slow you down
considerably. They also make a problem seem larger than they actually are. This is very similar to
what office meetings do to a decision that needs to be made: they blow it up to disproportionate sizes.

Every time my boss used to say “let’s brainstorm this issue”, my colleague used to go “sure, let me
go grab some coffee” and I knew this was already going to be a half-a-day decision. Whereas if we
had actually attempted to solve the problem first, we would’ve probably been done in 5 minutes and

7

I could’ve moved on to other interesting things.

What I’m recommending is to go through the tunnel without a broomstick to begin with. If you walk
for a bit and find a lot of cobwebs in your way, then go back and grab a broomstick. This allows you
to figure out which kind of specialized broomstick to bring with you instead of pre-equipping yourself
with a generic one. Maybe all you need is a dustpan at which point the broomstick you carried with
you is going to be not only useless but also cumbersome. But most importantly, going back to fetch a
broomstick each time helps you develop an instinct as to which kinds of problems require brainstorming
and which don’t. And this instinct is super critical. There are more tunnels out there without cobwebs
than there are with cobwebs.

3. Earlier I had said that some of the best problem-solvers I’ve seen are always the best observers. This
is a correlation between good problem solvers and good observers. The converse isn’t necessarily
true: being a good observer doesn’t in itself make you a good problem solver. In other words, good
observational skills are a necessary but not sufficient condition for being a good problem solver. I
therefore conclude that the fact that good problem solvers are good observers is only a correlation
and not a causation meaning these people aren’t good problem solvers solely because they are good
observers, but because they are good observers and many other things.

Drawing correlations are important because they teach me the traits that good problem solvers have
that I should incorporate into my own life. They also teach me the traits that bad problem solvers
have that I should either weed out of my life or at least stay away from. There are many of these
correlations if you look around and I have my suspicions that some of these may actually be causations.

One such correlation is coffee. Not all bad problem-solvers are heavy drinkers, but the heavy coffee
drinkers almost certainly are bad problem solvers. This trait becomes immediately apparent when
you see them “in action” as they are solving or proposing a solution to a problem. It always seems
so slow, and so dragged. Especially when they’re brainstorming. Brainstorming must always happen
fast since it is a brain-dump and good ideas don’t stay in your head too long. Also the simple act of
brainstorming generates more ideas causing a nuclear chain reaction. The more astute your mind is,
the more manageable this nuclear reaction is.

One cup of coffee a day seems okay. Three or more cups a day seems to almost certainly make you a
bad problem solver, or at least a slow one. I don’t really care if this correlation is a causation or not.
Just being a correlation is sufficient to cap my daily caffeine intake to one small cup a day.

4. Correlations are important. Look out for them as you brainstorm. The ability to draw connections is
a key tool every good problem-solver has in his toolbox while brainstorming.

8

Chapter 4

Analysis

There’s a good reason treasure chests are always found at the bottom of the sea. The physical reason is that
they are heavy enough to cause them to sink. The metaphorical reason is that only people who really want
the treasure chest get to it.

Interestingly, the results of an analysis follow a similar property. There’s a lot that can be learnt from a
good analysis, but you need to put in the effort to do it properly, thoroughly and completely. I can’t stress
completely enough because often the good stuff from an analysis comes at the last step. And getting to the
last step, assuming a 100-step process, requires that you’ve already performed the previous 99 steps.

Our goal then is to be able to take any object, idea, design, or process, then to analyze it as completely as
we can, and then be able to put the results of the analysis in an aggregated form, say for example, a table or
a chart. Taking tacit knowledge that comes out of an analysis and converting it into graphical information
such as a table or a chart is incredibly powerful because it is generally possible to do this only when you
have a thorough understanding of the topic at hand unless of course the data has been cooked up or tweaked
to support the result of the analysis.

People always criticize me for being over-analytical. But let me tell you, there is no such thing as over-
analysis. Especially if you’re working on quasi-infinite time. Perhaps you may choose to be a little more
discreet in sharing the results of your analysis, but never ever stop an analysis mid-way on your own problems.

I like playing logic puzzles and games, because I feel they help sharpen how analytical my mind can get.
Why is this so important? Well, the analysis step is perhaps the hardest part of the problem-solving process.
So many ways of attacking the problem. Which one’s the best? What’s the impact of my solution? What
are the side-effects? Who’s going to be affected? How? When? How can I divert? How do I mitigate?
What could go wrong in the implementation? This is only a taste of the questions we try to address while
performing an analysis of a problem and any proposed solutions.

Try to do stuff everyday that sharpens your intellect. I used to do that a couple of years ago, but then I
realized I was wasting my time. Instead, I spent time increasing my intellectual capacity. Increasing the
capacity (i.e., the upper bound on intellectual sharpness) is way more effective than increasing just your

9

intellectual level. Increasing the pitcher size somehow seems to increase the volume of water in it.

10

Chapter 5

Algorithms

When the Rubik’s cube first became popular in the early 80’s, no one thought there would be a clear cut
algorithm to solve it. Everyone thought it was something that you just “saw” that others couldn’t. That it
was something you kind of worked your way around until you got to where you wanted to be. This is why
the Rubik cube reference in the Pursuit of Happyness is so effective.

Today however, no one (at least no one I know of) really thinks of a Rubik cube as something that needs
to be “solved” in the traditional sense. We consider it a problem that has already been solved. We have
come up with a Rubik algorithm which if applied blindly can lead even a 7-year old to solving it in under 20
minutes. A computer can solve a fair1 Rubik’s cube in just a few seconds and can list the shortest sequence
of steps to get to the solution.

Algorithms are important. Most of our problems are solved today by computers. And algorithms are the
“language” we use to communicate orders to a computer. So what we need to keep in mind is that whenever
we attack problems, our end goal is to come up with an efficient algorithm that anyone can execute. This
end goal is critical. If I need to be called in every time the problem occurs, then I’m not going to have the
time to move on and look at other interesting problems.

An algorithm is a sequence of well-defined instructions that can be “compiled” down to native “machine
code” that can be executed by some part of the brain, say the medulla oblongata or the spinal cord, extremely
fast. The algorithm is a black box that has well defined inputs and well defined outputs.

This is an important idea. Everyday tasks are either simple and linear like brushing your teeth or complex
and non-linear like crossing a busy street. It is my opinion that these everyday tasks shouldn’t require much
mental effort and that they shouldn’t require much planning and thinking. They should just be algorithmized
to the point where it starts to becomes so boring you don’t even think about it.

This is not a new idea. Donald Norman in his book The Design of Everyday Things has a lot to say about
the nature of everyday tasks (p.124): “This is exactly what everyday tasks ought to be—boring, so that we
can put our conscious attention on the important things in life, not the routine.” We already do this for

1A “fair” Rubik’s cube is one where the parity of the permutations haven’t been messed with. There are 12 such parities
associated with a 3x3 cube.

11

simple, linear tasks. What I’m advocating is to consciously extend this idea to complex, non-linear ones that
are still routine. And to do this we need algorithms.

Recall that we have already gone through this process of algorithmizing (i.e. structuring) our thought-process
for both the Rubik’s cube as well as the tic-tac-toe game. No one really uses too much brain power to play
either game these days. We also seem to be doing this for at least the opening moves of any chess game. I want
to do this for other routine tasks that aren’t too simple like crossing a busy street, keeping appointments,
figuring out what clothes to wear to school in the morning, typing on a keyboard, figuring out which subset
of exercises I need to do each morning, figuring out which exit to take on the highway if not known already,
packing my baggage for a vacation, and on and on. There’s a lot in just a day if you simply pause to think
about it even for a second.

Back to the example problem of trying to cross a street with the least amount of mental effort and computa-
tion. The black box encodes every single possible scenario that can happen while trying to cross a street and
has a few special cases, known as disaster situations, where execution of the algorithm is aborted instantly
and control passed back to the brain.

In my street-crossing example, the inputs are sensory: colour of the pedestrian’s light, colour of the traffic
light, whether the pedestrian light is blinking or not, volume of the sound generated by surrounding vehicles,
etc. And the outputs are in the form of muscular movement: should I cross, or should I wait, or should I
wait at the platform in the middle? Or should I just make a run for it since I’m in a hurry?

The inputs occur solely at the start of the algorithm and the outputs solely at the end. When the brain takes
control, the inputs and outputs occur whenever the brain pleases which uses up processing power therefore
disrupting my train of thought. Conscious thinking by the brain is “slow, laboured, and serial.” Serial
meaning only one line of thought at any given time. Conscious thinking by the brain “ponders decisions,
thinks through alternatives, compares various choices, looks-ahead, backtracks if necessary, rationalizes,
draws from experience, and finds explanations.” These are all heavy-duty tasks that are slow and require a
lot of brain power. Even this isn’t so much of a problem. The biggest problem is that “conscious processing
involves short-term memory and is thereby limited in the amount that can be readily available at a given
time.” And this is a huge problem since most of our short-term memories are not only small (4-5 items at
once) but also surprisingly short!

Execution by the spinal cord on the other hand is fast and uses minimal processing power since execution is
simply a sequence of if-then-else statements and decision-making happens only at the end. This idea explains
how I can be in the middle of a heated argument or be reading a book and neither tasks need to pause all
that much while I cross the street. Except in disastrous situations where control is passed back to the brain.

They key point is that you have already thought about every single possibility and have specified an instruc-
tion for each of them. Such instructions can be executed extremely fast outside of the core part of the brain
by the subconscious mind to the point where you’re almost adding new instructions to your instinct.

When we’re born, we have only a few and that too relatively simple set of instructions added to our spinal
cord that we call reflex actions. These instructions are only to save our lives during extremes of situations,
but seldom to enhance our lives. Like what to do when you touch something hot. Or what to do when you’re
being electrocuted. Or drowning.

12

My question is why can’t we add more instructions, and not just more instructions, but also increasingly
complex instructions like crossing a road? The truth is we can. A lot of people do. Just subconsciously.

5.1 Big Oh

The computer scientists use something known as the “Big O” notation to describe the scalability and
performance of an algorithm. Clearly for our algorithms, the actual notation in use is of little consequence.
But there is still a clear need to be able to compare two different algorithms that address the same problem.
An exhaustive pros-and-cons (P&C) chart is probably one of the best ways to compare trade-offs but is
generally time consuming to come up with.

Different algorithms perform better in different situations so the best way to analyze the performance of an
algorithm is to actually run it. The differences between two or more algorithms then become immediately
apparent. If you can’t actually run the algorithm, then you can at least simulate it, either on a computer
or in your head. Pretend you are actually executing the algorithm and look for all the things that can go
wrong. Close your eyes, and pretend you are about to cross the street. What things do you need to worry
about?

I love P&C charts, and for good reason. Making an exhaustive P&C chart is probably one of the easiest
ways of ensuring you’ve captured all the variables at hand. P&C charts focus on what matters the most: the
gains and the shortcomings. It also makes comparing two aspects of the problem or two potential solutions
to the problem relatively easy.

Finally P&C charts give a nice holistic view of the different solutions to the problem making it easy to
recommend one without worrying about having missed other possible solutions.

13

14

Chapter 6

Iteration

From what I’ve seen so far, most vaguely defined problems today are solved by iteration. I really don’t
know why. Iteration as a means of problem solving is in itself not bad, just grossly inefficient. The second a
problem comes up, it is better to employ all your resources and squash the problem right away. This should
be familiar to us since we already do this for software bugs. But instead, what we’re used to doing is to
temporarily “solve” (i.e. postpone) the problem, or at least its symptoms, and to incrementally make this
solution better each time the problem comes back to bite us.

I have issues with this kind of solution technique. I spent three years at the University of Waterloo and
eight months working for them, and I noticed that this is how problems routinely get solved. The thing is,
after 50 years of iteration, the solution did get much better than what they initially started with, but this is
a solution made out of spare twigs, cello tape and newspaper clippings. What I’m looking for is a solution
made out of reinforced concrete, glass and steel. There is no match between the two.

At the University, we started with the assumption that any problem that couldn’t be immediately solved
should go through a lengthy process of iteration. But this made sense at the time because problems that are
not immediately solvable often require hours, days, sometimes even months of weird engineers and eccentric
mathematicians sitting in a room and thinking about it.

The iteration process sucked because it took us at least 8-10 iterations before an acceptable solution was
found, i.e. no further iterations were required. The delay between these iterations was anywhere from a few
days to a few months depending on the nature and complexity of the problem.

But that is not to say that iteration is bad all the time. A lot of numerical solutions to problems modeled
mathematically are solved by iteration. We’ve all heard of simple iteration, bisection method, Newton-
Raphson and Simpson’s Rule. If these ideas work for mathematicians and computer scientists, there’s a
good chance they work in numerous other fields as well.

The interesting thing is that iteration also works for writers. Notably essayists and novelists. If I sit down
and decide to write the perfect essay on my first run, I’m bound to screw up horribly. Instead, the best
way to write an essay, I have found, is to rush through to get to an initial draft, and then re-write it several

15

times until the essay becomes the essay I want it to be. This technique works because it is really hard to
keep content, style and format together in my mind at the same time. So I dump the content out first, and
I worry about style, grammar and flow during subsequent re-writes. This is exactly the process I used for
this very pocket guide. I got the first 2000 words done in under an hour.

My boss when I worked for the University called this technique “mushing.” Perhaps he was alluding, quite
appropriately, to what a potter does with his hands when spinning his pot on the wheel. The analogy is a
powerful one. Yet, I like to keep the terminology simple. I call it iteration.

16

Chapter 7

Memory

When faced with a challenge, we always go back in time to find a similar problem we might have possibly
encountered in the past. Then we take the solution that was applied to that problem, tweak it ever so
slightly to fit the current situation, and roll out a new solution to the current challenge at hand.

The human mind relies way too much on its memory to solve problems. We always go back to past experiences
to find what was done and try to adapt that to our current situation.

This problem solving technique in itself is crucial to survival. This is how we humans learn. Experience and
learning go hand-in-hand. But there are certain problems, especially those that involve rapidly changing
variables like technology for which this memory-reliant strategy isn’t always the best.

Have you ever witnessed an expert in a field being owned by an amateur when they’re both trying to solve
a very specific problem? This is because the expert is always going back to his past experience and trying
to find a similar problem in his repertoire of solved problems. The amateur, on the contrary, starts off with
a fresh slate. He looks at a problem objectively for he has no past experience to rely on. He identifies the
central idea behind the problem and voila, he has a solution in no time.

So if you find yourself trying to adapt past solutions to new situations, stop yourself at once. The adapted
solution may only be incrementally better, a mere iteration over the previous solution. You want to instead
think through a problem from scratch, re-consider every single variable again, and re-hash all the things
that could go wrong. This might seem time-consuming but the importance of certain variables are always
changing so frequently. What was just a minor detail last year now becomes critical.

In essence, if you can skip iterating and simply jump to the best solution at once, you’ll be leaps and bounds
better off than the rest of crowd that are relying solely on their memories and their experiences to solve their
complex problems.

17

	Observation
	What This Pocket Guide Isn't
	Initial Reaction
	Creativity

	Problem Solving
	Brainstorming
	Analysis
	Algorithms
	Big Oh

	Iteration
	Memory

